2008 Regional Specific Studies

Brackish Groundwater Study

Prepared For

Region D – North East Texas Regional Water Planning Group

May 2009

Prepared By

Bucher Willis & Ratliff Corporation

In Association With:

Hayter Engineering, Inc. Hayes Engineering Company Bob Bowman Associates

Appendix B

Brackish Groundwater Study Prepared for North East Texas Regional Water Planning Group

Table of Contents

EX	ECUTIVE SUMMARY1
1.	INTRODUCTION AND SCOPE
2.	BACKGROUND INFORMATION
	2.1. Desalination Overview
	2.2. Desalination Technologies (Photo of Southmost RO Facility)
	2.3. Advantages/Disadvantages of Water Desalination
	2.4. Desalination Funding in Texas10
3.	BRACKISH GROUNDWATER OPPORTUNITIES IN REGION D12
	3.1. Potential Water User Groups for Desalination12
	3.2. Potential Water User Groups Based on Actual Shortages14
	3.3. Review of Water System Surveys from Previous Planning Cycle17
	 3.3.1. Non-Residential Potential Users
	3.4. Brackish Groundwater in Texas and in the North East Texas Region20
	3.5. Disposal of Desalination Concentrate
	3.6. Please Pass the Salt Study
	3.7. WUG Proximity to Oil/Gas Reserves and Known Brackish Groundwater Study
4.	COMPARISONS OF BRACKISH WATER COSTS47
	4.1. TWDB Commissioned Reports
	 4.2. Cost Analysis for Treatment of Brackish Groundwater – Methodologies from Guyton 2003 and HDR 2000 Reports
	4.2.1. Capital Costs
	4.2.2. Operation and Maintenance Costs

	4.2.3.	Energy Costs	52
	4.2.4.	Cost of Wells for Source Water	53
	4.2.5.	Concentrate Disposal	54
	4.2.6.	Cost Estimates for Brine Disposal Methods	55
	4.2.7.	Deep Well Injection Costs Estimates	55
	4.2.8.	Evaporation Pond Cost Estimates	57
	4.3. R.W.	Beck, Inc. 2004 Report – Chapter 5 Estimated Range of Costs	59
	4.4. Curren	nt U.S. Water Costs and El Paso's Desalination Facility	61
	4.5. Case S	Study A: City of Clarksville City	61
	4.6. Case \$	Study B: City of Tatum	63
		Study C: Economic Implications of Conventional Water Treatment Versus ination: A Dual Case Study	65
5.	CONCLU	SION	72
6.	REFEREN	NCES	74
7.	APPENDI	X A – Water User Groups Analyses Tables	77
8.	APPENDI	X B – Guyton Analysis	97
9.	APPENDI	X C – TWDB Comments and Responses	123
10.	APPENDI	X D – TCEQ Proposed General Permit	129
11.	APPENDI	X E – Well Drillers Logs from Hayes Engineering, Inc	133
12.	APPENDI	X F – Survey of Non-Residential User Interest in Brackish Groundwater.	179

List of Tables

Table	1:	Table 4.42 from the 2006 NETRWP12
Table	2:	Water Use Groups with Actual Shortages: Projected Costs
Table	3:	Non-Residential Users Types in Region D
Table	4:	WUGS with Actual Shortages: Proximity to Oil/Gas Reserves
Table	5:	Brackish Water Treatment Costs
Table	6:	Estimated Well Costs for Brackish Water Production Wells
Table	7:	Brackish Water Desalination Facility Feature Cost Ranges60
Table	8:	City of Clarksville City WTP Annual Costs
Table	9:	City of Clarksville City Current Water Rates
Table	10:	Water Quality Analysis of City of Tatum's Wells 1, 2, and 363
Table	11:	City of Tatum Annual Operating Costs
Table	12:	Initial Construction and Annual Continued Costs for the Ten
Table	13:	Initial Construction and Annual Continued Costs for the Seven
Table	14:	Capital Replacement Items, Occurrence, and Costs for the
Table		Aggregate Results for Costs of Production at the McAllen
Table	16:	Costs of Producing Water by Cost Type for the McAllen
Table	17:	Costs of Producing Water by Continued Cost Item for the
Table	18:	"Modified" Aggregate Results for Costs of Production at the

Table 19:	"Modified" Costs of Producing Water by Cost Type for the70 McAllen Northwest and Southmost Facilities, 2007.
Table 20:	"Modified" Costs of Producing Water by Continued Cost Item

List of Figures

Figure 1: Region D Location Map	6
Figure 2: Planning Area Base Map	7
Figure 3: Desalination Facilities in Texas	11
Figure 4: Distribution of Brackish Groundwater in Texas	23
Figure 5: Brackish Wells/Population Centers and Major Aquifers	24
Figure 6: Camp County	25
Figure 7: Cass County	26
Figure 8: Gregg County	27
Figure 9: Harrison County	
Figure 10: Hopkins County	29
Figure 11: Hunt County	
Figure 12: Smith County	
Figure 13: Upshur County	
Figure 14: Van Zandt County	
Figure 15: Wood County	
Figure 16: Region D Brackish Wells and Capacities	35
Figure 17: Locations of Analysis Areas	
Figure 18: Location of Major Oil and Gas Reservoirs in Texas	40
Figure 19: Generalized Tectonic Map of Texas Showing Location of Sedimentary Basins	41
Figure 20: Locations of Class II Injection Wells in Texas with	42

Corresponding Completion Depths

Figure 21:	Texas Counties with Water-Supply Needs in 2050	43
Figure 22:	Location of Brackish Water Samples with TDS Concentrations	14
•	Major Oil and Gas Reserves in the East Texas Analysis Area	15
Figure 24:	Total Treatment Cost for Brackish Groundwater Desalination	49
Figure 25:	Capital Costs Associated with Brackish Groundwater Desalination	51
Figure 26:	O&M Costs for Brackish Groundwater Desalination	52
Figure 27:	Recent Data (circa 2003) indicating the Effect of Power Costs for Treating 3,000 mg/L Brackish Groundwater	53
Figure 28:	Total Concentrate Disposal Cost as a Function of Tubing Diameter and Well Depth	56

Brackish Groundwater Study Prepared for North East Texas Regional Water Planning Group

EXECUTIVE SUMMARY

In June 2007, the Texas Water Development Board (TWDB) commissioned the Northeast Municipal Water District (NETMWD) to provide a study of brackish groundwater opportunities in Region D, North East Texas Regional Water Planning Area (NETRWPA).

NETRWPA anticipates a 72% increase in population during the 50-year planning period (2010 to 2060). During the planning period, water demand is estimated to increase by 50%, requiring an additional 277,900 acre-feet of water. It should also be noted that the drought cycle for North East Texas imposes peak demands which could be mitigated by developing additional water supplies. Although it is expected that some of this increased demand can be met through more aggressive water conservation and increased use of existing supplies, utilization of brackish groundwater may be an important supplemental source for the region. There were no strategies proposed in the 2006 Regional Plan involving the treatment and use of brackish groundwater.

Desalination of brackish groundwater involves additional operation and maintenance costs, and is a significant effort. For example, a brine disposal injection well can cost substantially more than the production well. Nevertheless, brackish groundwater may represent an important additional supply for NETRWPA. Municipal needs are projected to increase by 49% between 2010 and 2060, requiring an additional 58,000 acre-feet of water. Smaller municipalities have traditionally relied upon well water where it was available, because of its lower production cost and ease of maintenance when compared to treating surface water. However, some small communities in NETRWPA lack access to fresh groundwater supplies, but do have access to brackish groundwater.

The process of desalinating brackish water most frequently is reverse osmosis, although electro dialysis is also used. Both are membrane processes. In reverse osmosis, water from a pressurized saline solution is separated from the dissolved salts by flowing through a water permeable membrane. The permeable membrane allows the water to pass through, but not the dissolved salts. After reverse osmosis, the processed water requires degasification and pH adjustment to be potable. This type of water treatment is an established technology with known installation costs. Operational costs are decreasing as technology improves.

As noted above, there are potential problems with using brackish water. Brackish water removal from the water sands may impact fresh water resources. After treatment, the waste water from the desalination process contains high concentrations of dissolved solids. Discharge through land application or underground injection may eventually damage existing fresh groundwater supplies. The discharged brine waste could infiltrate

through the soil, eventually entering fresh water sands, thereby contaminating these. Discharge near surface streams and reservoirs could create a similar problem. Careful planning and research are required to mitigate this problem. Obtaining appropriate discharge permits is also a time consuming and expensive process.

Cost of desalination was also studied. Although desalination plant costs are declining, recent studies suggest capital costs of \$2.76/gpd to \$5.52/gpd for the desalination plant, typical capital costs for the well, higher energy costs, and significant costs of brine disposal. While significantly higher than a freshwater well, these costs may still compare favorably to costs for surface water treatment. Generally, overall total treatment costs vary from \$0.98/Kgal to \$3.80/Kgal in November 2008 dollars.

Recently, TWDB has published *Please Pass The Salt: Using Oil Fields For the Disposal* of *Concentrate From Desalination Plants*. The study demonstrates that oil fields can accommodate brine waste water, and recommends regulatory changes to improve the permitting process. Use of oil wells would be more beneficial than current methods because it is less expensive, more environmentally friendly, and because the technology for oil well injection already exists. As noted in that report, East Texas is a region which has a great many oil wells, a need for additional water supplies, and brackish water resources. As a general rule if there is oil in the area then there is also brackish water.

Information recently compiled by TWDB, "Brackish Groundwater Manual for Texas Water Planning Groups," suggests that NETRWPA has 55,712,000 acre feet of brackish groundwater. Given the planning period additional water requirement of 277,900 acrefeet, brackish groundwater represents an important potential source. It was not a recommended strategy in the last planning cycle, primarily because of brine disposal costs, and study is now needed to determine where and how it can best be used in the Region.

Review of water system surveys from the previous planning cycle was performed in order to identify potential brackish groundwater user groups. Focus was placed on municipal and non-municipal uses. Brackish groundwater well fields have been identified and production capacities estimated.

Brackish groundwater is available in NETRWPA and desalination technologies are improving and becoming more economical. A primary cost element is the disposal of the waste concentrate. Recent studies have shown that it is feasible to inject the waste concentrate into depleted oil and gas wells. However, the most economical disposal of waste will be direct discharge to waste water treatment facilities. Published studies have shown that total treatment costs range from \$0.98/Kgal to \$3.80/Kgal. An actual case study in East Texas has shown the cost to be \$4.89/Kgal; therefore, while the use of brackish ground water is feasible, and potential projects exist and user groups have been indentified, it is still more expensive than other current methodologies.

Brackish Groundwater Study Prepared for North East Texas Regional Water Planning Group

1.0 INTRODUCTION

In June 2007, The Texas Water Development Board (TWDB) commissioned a study of brackish groundwater opportunities in the North East Texas Regional Water Planning Area (NETRWPA). This was done as part of the 2008 Regional Specific Studies through its administrator, the Northeast Municipal Water District (NETMWD). The inclusion of this topic was a direct result of the 2004 NETRWPG request to the TWDB for permission to investigate a potential Water Management Strategy (WMS) for the City of Kilgore utilizing treated effluent from its wastewater treatment plant for fluid injection in oil and gas reservoirs in lieu of using potable water. That study was included in the Supplemental Tasks for the 2006 North East Texas Region Plan (NETRWP). Although it was inconclusive as to the request it did generate interest in the use of brackish groundwater and its disposal to meet shortages for specific Water User Groups (WUGs) in the NETRWPA.

Therefore, the purpose of this study is to examine the potential of using brackish groundwater to meet the municipal and industrial needs of the NETRWPA along with comparing costs to other alternatives.

Expanding upon the methodology used to provide this study, the North East Texas Regional Water Planning Group (NETRWPG), through its administrator, the NETMWD, has contracted with the Consultant Group to (1) identify existing water users who have needs that could be augmented by brackish groundwater; (2) analyze which water users might potentially use brackish groundwater; (3) compare of brackish water costs to other alternatives; and, (4) prepare recommendations for incorporation into the Regional Plan.

The study and report implemented the following strategies for each of the above tasks:

- 1. Identification of existing water users who have needs that could be augmented by brackish groundwater was accomplished by:
 - a. Review water system surveys from previous planning cycle; and,
 - b. Focusing on potential use of brackish groundwater to meet municipal and industrial needs.
- 2. Analysis of which water users might potentially use brackish groundwater, by integrating brackish water field availability, water demand, lack of alternates and ease of brine waste disposal, by:
 - a. Locating potential brackish groundwater well fields using TWDB maps and related data, including geophysical logs and well driller reports;
 - b. Estimating the production capacity of wells in the brackish groundwater zone and the number of wells required to meet demands;
 - c. Correlating the well field data with water users;

- d. Identifying concentrate disposal options based on TWDB reports, especially by considering the 2006 TWDB Report 366 *Please Pass the Salt: Using Oil Fields for the Disposal of Concentrate from Desalination Plants*, and including more detailed data on oil wells using Railroad Commission data; and,
- e. Identifying other water supply options for the selected water users.
- 3. Comparison of brackish water costs to other alternatives by:
 - a. Developing capital cost estimates for membrane processes for desalination, pretreatment, storage, wells, and other related capital;
 - b. Developing operational cost estimates for plant operation and brine disposal;
 - c. Comparing the brackish groundwater costs to other available supply alternatives; and,
 - d. Comparing environmental consequences of available supply alternatives and brackish groundwater use.
- 4. Preparation of recommendations for incorporation into the Regional Plan by:
 - a. Identifying potential projects;
 - b. Ranking water supply alternatives; and,
 - c. Recommending specific brackish water projects as preferred supply sources, if appropriate.

To satisfy the goals above, this report will also present a brief overview of desalination, desalination projects in Texas, specific aspects related to brackish groundwater desalination and options for the disposal of desalination waste product.

2.0 Background Information

In January 2007, the Texas Water Development Board (TWDB) published the results of a multi-year, statewide water planning effort entitled *Water for Texas 2007*. The report found that the population of Texas is projected to increase from 21 million to about 46 million by the year 2060, fueling a 27 percent increase in water demand (TWDB 2007). During the same period, freshwater supplies are projected to decrease by about 18 percent, primarily because of accumulating sediments in reservoirs and depletion of aquifers (TWDB 2007).

In June 1997, Governor George W. Bush signed into law Senate Bill 1 (SB 1), comprehensive water legislation enacted by the 75th Texas Legislature. This comprehensive water legislation was an outgrowth of increased awareness of the vulnerability of Texas to drought and to the limits of existing water supplies to meet increasing demands as population grows (TWDB website, current, http://www.twdb.state.tx.us/wrpi/rwp/rwp.htm).

In April 2002 Texas Governor Rick Perry, recognizing the importance of desalination to the future of Texas, direction TWDB to develop a large-scale demonstration seawater desalination project (TWDB 2007). In 2003, the Texas Legislature passed House Bill

1370 to "... undertake or participate in research, feasibility and facility planning studies, investigations, and surveys as it considers necessary to further the development of costeffective water supplies from seawater desalination in the state." [HB 1370 ~TWC §16.060]. In response, TWDB provided \$1.5 million for three feasibility studies to assess the technical viability of proposed seawater desalination projects: Lower Rio Grande Valley (Brownsville), City of Corpus Christi, and Freeport (NRS 2008).

In 2005, TWDB expanded the scope of its desalination activities to include brackish groundwater (NRS 2008). The term "brackish" refers to the level of total dissolved solids in a water supply. Generally, supplies with a total dissolved solids (TDS) level up to 1,000 milligrams per liter (mg/l) are considered "fresh," and are suitable for most purposes, including municipal, without further treatment to remove TDS. Supplies with TDS levels above 1,000 mg/l, up to 3,000 mg/l are considered slightly saline, and from 3,000 to 10,000 mg/l are moderately saline. These mild and moderate level waters are considered "brackish." As emphasized by Mr. Jorge Arroyo, P.E., Director of Innovative Water Technologies, TWDB, in a 2005 presentation to the South Central Desalting Association, there is as much as 2.7 billion acre-feet of brackish groundwater in Texas (Guyton 2003) and there is as much as 55.7 million acre-feet in the North East Texas Region (Guyton 2003). To place this number in perspective, the largest surface water source in the region is Lake Tawakoni, which holds less than 1 million acre-feet at normal level.

According to *Water for Texas* (TWDB 2007), the 16 Texas regional planning groups have identified 4,500 water management strategies to generate the additional water supply needs for Texas during drought. The water management strategies include municipal and agriculture conservation, reservoirs, wells, water reuse, desalination plants, and other strategies. Fourteen new major reservoirs would result in about 1.1 million acre-feet per year by 2060. Additional water reuse would result in about 800,000 acre-feet per year by 2060. Desalination projects would result in about 320,000 acre-feet per year by 2060. Desalination projects would result I about 320,000 acre-feet per year by 2060 (TWDB 2007). If implemented, desalination can significantly augment the 2060 projected water supply needs. Currently, eight of the 16 planning groups have included desalination projects as recommended strategies to meet water supply needs (TWDB 2007). The regions that have included desalination are the following: Region E - Far West Texas, Region F (includes San Angelo), Region H (includes Houston), Region K - Lower Colorado, Region L - South Central Texas, Region M - Rio Grande, Region N - Coastal Bend and Region O - Llano Estacado (see Figures 1 and 2).

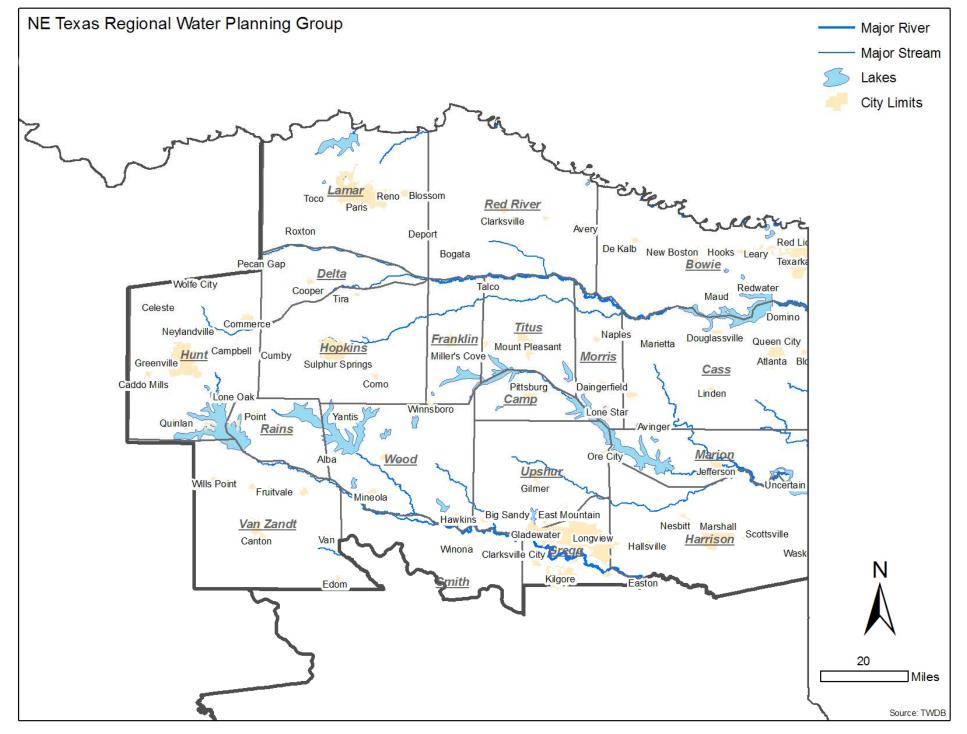
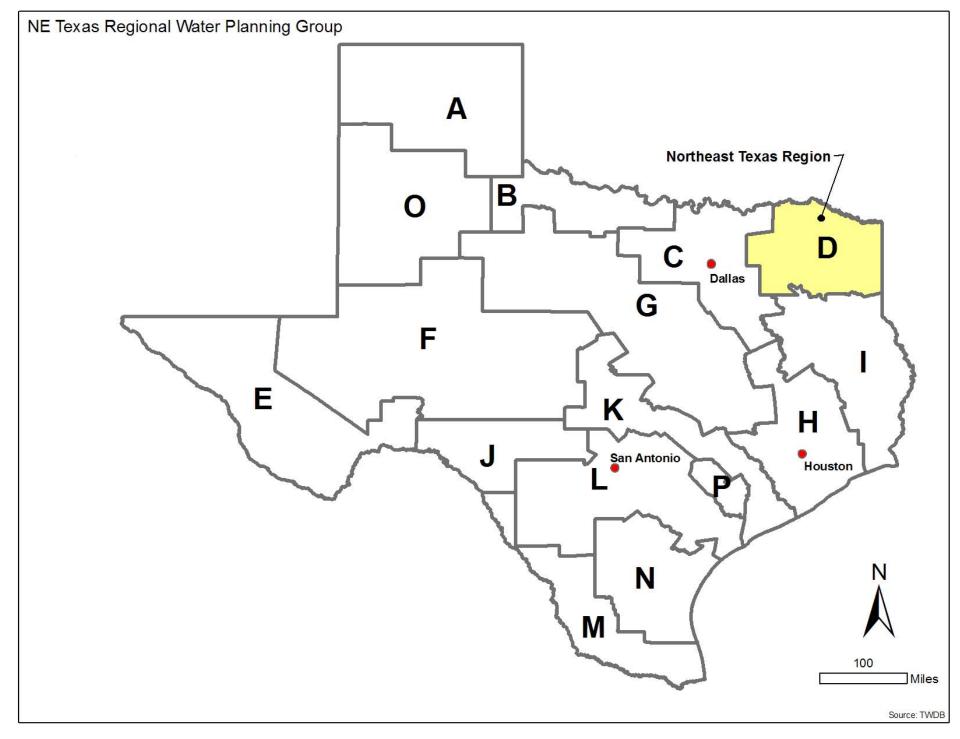



Figure 1: Region D Location Map 6

2.1 Desalination Overview

A succinct overview of the desalination process is provided in TWDB Report 360, Chapter 15 Water Desalination (TWDB 2005). The report references a number of previous reports and documents specific to desalination provided by TWDB staff, various consultants to TWDB and the U.S. Bureau of Reclamation and other agencies. These documents are referenced throughout this report. Selected passages from Arroyo 2005 are included or paraphrased below, supplemented by information from other reports and referenced as appropriate.

2.2 Desalination Technologies

Desalination is the process of removing dissolved solids, primarily salts, from water. There are a number of methods of removing salts to render it safe for human consumption. These generally include thermal technologies and membrane technologies. Thermal technologies are those that heat water and collect condensed vapor to produce pure water (distillation). These are generally used in seawater applications where the TDS level is much higher (average about 35,000 mg/l). Also, TWDB 2005 notes that thermal technologies are more economically attractive if operating in conjunction with steam power generation because the steam released from the power generation plant can be advantageously used as input into the desalination plant. Distillation technologies account for approximately one-half of the world's installed desalination capacity, and it is more commonly used in areas of the world with large supplies of fossil fuel (U.S. Bureau of Reclamation, 2003).

Membrane-based technologies utilize semi-permeable membranes to separate the salts from the water. There are two types of membrane processes: electro-dialysis reversal (EDR) process and reverse osmosis (RO) process (TWDB 2005). The EDR process utilizes electricity to energize opposing electrodes to attract and separate out positive and negative ions of the dissolved salts from a saline water supply. The ions are attracted to the electrodes and travel through semi-permeable membranes that screen the ions from the water stream. Thus, salt water flowing through an EDR unit loses dissolved salts and the resulting stream is pure water. EDR systems may be used with water containing low amounts of TDS. However, when TDS levels exceed 3,000 mg/l, RO systems are typically the preferred choice for desalination (TWDB 2005). The vast majority of brackish groundwater facilities use the RO process, often with pretreatment by micro-, nano- or ultra-filtration methods.

Osmosis is the movement of a solvent (water) through a semipermeable membrane into a solution of higher solute concentration that tends to equalize the concentrations of solute on the two sides of the membrane (Merriam-Webster website, current, http://www.merriam-webster.com/dictionary/osmosis). The reverse osmosis process uses pressure to force water through a membrane that retains impurities and allows the pure water to pass through. Typical RO operating pressures range from 200 to 450 psi for brackish groundwater plants and 800 to 1,200 psi for seawater plants (TWDB 2005). A by-product of the desalination process is brine, a highly concentrated saline stream,

typically above 35,000 mg/l, which requires careful management and disposal. Methods of concentrate disposal are presented later in this report. The following photograph depicts the RO facility of the Southmost Regional Water Authority in Brownsville, Texas.

Southmost Regional Water Authority Reverse Osmosis Facility, Brownsville, Texas (photograph from NRS Consultants report by Joseph W. Norris).

2.3 Advantages/Disadvantages of Water Desalination

Water desalination, particularly membrane or filtration technologies, provide a superior quality product regardless of the source water quality. For the State of Texas, the leading advantage that water desalination offers is the ability to add drought-proof supplies to the State's water supply portfolio (TWDB 2005).

Other advantages that water desalination has over more conventional water supply sources as follows, as presented in TWDB 2005:

<u>Sizing of facilities</u>: Water desalination is commonly described as a "hardware technology", meaning that it is accomplished by means of pumps, membranes/filters, and other pieces of equipment. This feature results in smaller size facilities when compared with other conventional water supply alternatives, such as surface-water reservoirs and conventional water treatment plants with clarifiers, sand filters and similar structures. Also, water desalination lends itself to modular expansions, meaning that additional capacity may be added with relative ease by increasing the numbers of filtration

elements. This flexibility is important when trying to minimize or optimize the initial capital investments to better match the projected water demands on the project.

<u>Ability to incorporate technology innovations</u>: An advantage of the hardware nature of water desalination is that it allows for new cost-saving innovations, such as foul-resistant membranes and improved energy recovery devices, to be incorporated into existing operational plants with relative ease.

<u>Siting flexibility</u>: In the case of brackish groundwater facilities, there is a relative advantage over conventional surface-water supply alternatives with regards to the location of the treatment plant that may be located closer to the final point of use and thus minimizing treated water transmission costs.

The most noticeable disadvantage of water desalination is its high use of energy. Approximately one third of the operational costs of a water desalination facility can be from power consumption. If the power costs increase, there is a direct impact to the cost of the desalinated water.

2.4 Desalination Funding in Texas

Currently, there are approximately 100 public water systems in Texas using desalination to treat brackish sources for a total of nearly 80 million gallons per day of installed capacity. El Paso leads this list with its flagship facility, the 27.5 million gallons per day (MGD) Kay Bailey Hutchison Brackish Groundwater Desalination Plant (Arroyo and Kalaswad, 2008).

As stated earlier, eight of 16 Water Planning Regions have indicated desalination as a strategy in their 2007 Regional Water Plans. Figure 3 shows existing desalination facilities in Texas in 2005 (NRS 2008). Many of the desalination facilities shown in Figure 2 are in regions that have not formerly indicated desalination as a strategy.

In recent years, there has been a growing interest in seawater desalination, largely due to Governor Rick Perry's vision for developing a drought-proof supply for Texas by turning seawater into potable water. In an April 29, 2002, address in San Antonio directing the TWDB to recommend a large-scale seawater desalination demonstration project, he said "To me it is not a matter of whether saltwater will one day be used as an abundant source for public use, but when and where. As a people, we must have the courage to look into the future and invest today for a better tomorrow. There is no greater untapped source of water than the ocean water that Texas can easily access." It has since become the cornerstone of Governor Perry's water policy initiative.

Thanks to a series of legislative appropriations now totaling more than \$4.7 million, Texas has been methodically moving toward fulfilling Governor Perry's vision. After conducting three feasibility studies for potential seawater desalination projects, TWDB awarded a grant of \$1.3 million in 2006 to the Brownsville Public Utilities Board to perform a seawater desalination pilot plant study in Brownsville (the Lower Rio Grande Regional Seawater Desalination Pilot Plant).

Concurrent with funding for seawater desalination studies, the Texas Legislature also appropriated funds to TWDB to implement a brackish groundwater desalination initiative. The goal of this initiative is to develop tangible examples or models of brackish groundwater desalination that illustrate the use of innovative, cost-effective technologies and offer solutions to practical issues. A total of \$2.12 million has been awarded to nine separate entities to implement research studies and/or demonstration projects to facilitate the development of brackish groundwater supplies in the state.

All of these efforts may help explain, at least in part, the growing importance of water desalination strategies on the state water planning process. According to the 2007 State Water Plan, 3.5 percent of the new water supplies to be developed by 2060 will be provided by desalination. Although modest compared to other strategies (for example, water reuse accounts for 14 percent of the portfolio), desalination strategies increased by 74 percent from the previous State Water Plan published in 2002 (Arroyo and Kalaswad, 2008).

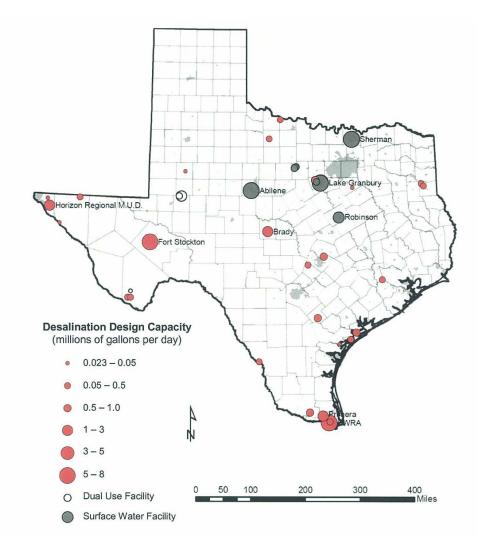


Figure 3: Desalination facilities in Texas, 2005. Facilities with a design capacity greater than 1.5 MGD are named. (NRS 2008 and TWDB 2006).

3.0 BRACKISH GROUNDWATER OPPORTUNITIES IN NETRWPA

In the 2006 Regional Water Plan for the North East Texas Region, three types of water shortages have been identified. The first, and most common, is caused by expiration of a water supply contract or permit. Most water supply contracts and permits have expiration dates, and the TWDB guidelines require that supplies based on contractual agreements should extend past the existing term of contract if the contract is renewable. In most cases, the recommended water supply strategy for these Water User Groups (WUGs) is renewal of their existing contract/permit on or before its expiration date. The second type of shortage is also contractual. These are instances where a contract expires, and the simple renewal of that contract will not adequately compensate for increased demands. In this case, an increase in the contract amount, or additional water supply sources, would be required to meet demands. The final type of shortage addressed in this region in the 2006 Regional Water Plan is the "actual" or "physical" water shortage. In this case, the entity's current water supply will not be sufficient to meet projected demands and additional water sources will be required. This type of shortage is most common among entities that utilize groundwater supplies because well capacity is held at existing development levels throughout the planning period.

3.1 Potential Water User Groups for Desalination

This study addresses WUGs that have an anticipated "actual" or "physical" shortage for which the planned strategy is new groundwater wells. There are 46 entities in the North East Texas Region with actual projected water supply shortages. Additional groundwater supply is recommended for 32 of these entities. Surface water supplies are recommended for the other 14 entities. Campbell WSC in Hunt is recommended for both surface and groundwater. Although there are more individual entities with a recommendation for groundwater, surface water is the predominant recommended supply, accounting for approximately 91 percent of the total supply required for the Region. The information contained in the 2006 Regional Water Plan is included here in its entirety (Table 1 – Table 4.42 of the 2006 NETRWP).

	Shortage (ac-ft/yr)		Ground Stra (ac-f		Surface Water Strategy (ac-ft/yr)	
Year	2030	2060	2030	2060	2030	2060
Bowie County				·	·	
Red River Redevelopment	2435	4074			2435	4074
Authority						
Camp County						
BI-County WSC	299	653			299	653
Woodland Harbor	60	60	65	65		
Cass County					·	

Table 1: Table 4.42 Recommended Strategies for Entities with Actual Shortages (BWR 2006).

Linden	101	104	215	215		
Delta County	·					
Ben Franklin WSC	33	36			33	36
Franklin County						
Gregg County						
Clarksville City	148	217	162	242		
Liberty City WSC	287	678	376	752		
West Gregg SUD	56	333	70	350		
Starrville-Friendship WSC	0	101	0	108		
Harrison County	l l		•	ł		
Waskom	54	151	88	176		
Blocker-Crossroads WSC	100	128	129	129		
Caddo Lake WSC	19	52	43	86		
Leigh WSC	0	36	0	43		
Scottsville	0	7	0	65		
Talley WSC	97	142	118	177		
Steam Electric	0	3184			0	3184
Hopkins County						
Miller Grove WSC	24	6	35	35		
Hunt County						
Able Springs WSC	0	171			0	171
Campbell WSC	101	762	108	108	0	665
Cash WSC	0	4152			0	4152
Celeste	0	101			0	108
Combined Consumers WSC	75	3631			75	3631
Hickory Creek SUD	270	1667	270	1882		
Wolfe City	101	195			101	195
Steam Electric	14457	23902			14457	23902
Little Creek Acres	37	153			37	153
West Leonard WSC	5	28	81	81		
Lamar County						
Petty WSC	20	20			20	20
Steam Electric	980	7474			980	7474
Marion County						
Morris County						
Rains County						
Red River County						
Smith County		105		500		
Crystal Systems Inc.	0	425	0	538		

TOTALS (all counties)	20,834	86,623	3,249	7,838	18,437	79,970
Yantis	20	18	38	38		
Mineola	374	360	403	403		
Wood County						
Little Hope-Moore WSC	79	162	113	188		
Fruitvale WSC	119	269	129	301		
Edom WSC	72	124	96	124		
Crooked Creek WSC	21	56	59	59		
Corinth WSC	0	22	0	27		
R P M WSC	30	99	37	102		
Grand Saline	143	255	323	323		
Canton	217	349	291	387		
Bethel Ash WSC	0	17	0	81		
Van Zandt County						
Pritchett WSC	0	51	0	54		
Upshur County						
Steam Electric	0	31552			0	31552
Titus County						
Star Mountain WSC	0	83	0	108		
Lindale	0	374	0	376		
Lindale Rural WSC	0	189	0	215		

As can be seen from the Table 4.42, 32 WUGs have identified groundwater strategies to supplement projected water shortages. Brackish groundwater could be used to meet a portion of the project shortages.

Pursuant to the 2006 Regional Water Plan, the development of water wells generally has minimal environmental impact, because of the limited construction disturbance, and the limited disturbance tends to be temporary. Generally, environmental issues can be easily avoided by the appropriate siting of new wells. Similarly, water management strategies that require the transmission of treated water as opposed to construction of new treatment facilities or reservoirs, typically have minimal environmental impact because the disturbances with water mains are also temporary or can be minimized in the routing of the water transmission pipelines. The development of treatment facilities may have greater environmental impact. All of these strategies should avoid, minimize, or mitigate adverse environmental impacts during project development.

3.2 Potential Water User Groups Based on Actual Shortages

Considering the information provided in the above table from the 2006 Regional Water Plan, the 32 WUGs, with their respective counties, considered in this report are as follows:

Camp County - Woodland Harbor **Cass County** – Linden

- **Gregg County** Clarksville City, Liberty City WSC, West Gregg SUD, and Starrville-Friendship WSC
- Harrison County Waskom, Blocker-Crossroads WSC, Caddo Lake WSC, Leigh WSC, Scottsville, and Talley WSC

Hopkins County - Miller Grove WSC

- Hunt County Campbell WSC, Hickory Creek SUD, and West Leonard WSC
- Smith County Crystal Systems, Inc., Lindale Rural WSC, Lindale, and Star Mountain WSC

Upshur County - Pritchett WSC

Van Zandt County - Bethel Ash WSC, Canton, Grand Saline, R P M WSC, Corinth WSC, Crooked Creek WSC, Edom WSC, Fruitvale WSC, and Little Hope-Moore WSC

Wood County – Mineola and Yantis

Again, the recommended strategies for these WUGs with Actual Shortages are additional groundwater wells. The estimated costs to provide the additional wells are presented in the 2006 Regional Water Plan, Appendix A – Chapter 4 Appendix and are summarized in Table 2.

Table 2: Water User Groups with "Actual" or "Physical" Shortages with Existing Recommended Groundwater Strategies -Cost Estimates for Meeting Projected Supply Needs

Camp County Woodland Harbor Cass County Linden Gregg County Clarksville City Liberty City WSC West Gregg SUD Starrville-Friendship WSC Harrison County Waskom Blocker-Crossroads WSC Caddo Lake WSC	Serv 2030 588 2,482 1,148 5,647 4,233 1,574 3,485 1,010 1,249 2,161 871 1,664	2060 588 2,575 1,682 8,485 6,382 2,386 2,386 4,240 1,225 1,515 3,139	(ac-f 2030 65 101 148 287 56 0 0 54 100 19	2060 65 104 217 678 333 101 151 128	2030 65 215 162 376 70 0 88	(ac-ft/yr) 2060 65 215 242 752 350 108	(ac-ft) 65 215 217 753 350 108	Capital Cost \$775,872 \$340,579 \$1,518,443 \$2,096,569 \$1,502,847 \$316,158	Annualized Cost* \$66,928 \$60,060 \$150,043 \$271,451 \$166,524 \$39,355	Cost (\$/ac-ft/yr) \$596 \$222 \$743 \$627 \$320 \$259	Cost (\$/Kgal) \$1.83 \$0.68 \$2.28 \$1.92 \$0.98 \$0.79	Impact Minimal Minimal Minimal Minimal Minimal Minimal
Camp County Woodland Harbor Cass County Linden Gregg County Clarksville City Liberty City WSC West Gregg SUD Starrville-Friendship WSC Harrison County Waskom Blocker-Crossroads WSC Caddo Lake WSC	588 2,482 1,148 5,647 4,233 1,574 3,485 1,010 1,249 2,161 871	588 2,575 1,682 8,485 6,382 2,386 4,240 1,225 1,515 3,139	65 101 148 287 56 0 54 100	65 104 217 678 333 101 151	65 215 162 376 70 0 88	65 215 242 752 350 108	215 217 753 350	\$775,872 \$340,579 \$1,518,443 \$2,096,569 \$1,502,847	\$66,928 \$60,060 \$150,043 \$271,451 \$166,524	\$596 \$222 \$743 \$627 \$320	\$1.83 \$0.68 \$2.28 \$1.92 \$0.98	Minimal Minimal Minimal Minimal
Woodland Harbor Cass County Linden Gregg County Clarksville City Liberty City WSC West Gregg SUD Starrville-Friendship WSC Harrison County Waskom Blocker-Crossroads WSC Caddo Lake WSC	2,482 1,148 5,647 4,233 1,574 3,485 1,010 1,249 2,161 871	2,575 1,682 8,485 6,382 2,386 4,240 1,225 1,515 3,139	101 148 287 56 0 54 100	104 217 678 333 101 151	215 162 376 70 0 88	215 242 752 350 108	215 217 753 350	\$340,579 \$1,518,443 \$2,096,569 \$1,502,847	\$60,060 \$150,043 \$271,451 \$166,524	\$222 \$743 \$627 \$320	\$0.68 \$2.28 \$1.92 \$0.98	Minimal Minimal Minimal Minimal
Cass County Linden Gregg County Clarksville City Liberty City WSC West Gregg SUD Starrville-Friendship WSC Harrison County Waskom Blocker-Crossroads WSC Caddo Lake WSC	2,482 1,148 5,647 4,233 1,574 3,485 1,010 1,249 2,161 871	2,575 1,682 8,485 6,382 2,386 4,240 1,225 1,515 3,139	101 148 287 56 0 54 100	104 217 678 333 101 151	215 162 376 70 0 88	215 242 752 350 108	215 217 753 350	\$340,579 \$1,518,443 \$2,096,569 \$1,502,847	\$60,060 \$150,043 \$271,451 \$166,524	\$222 \$743 \$627 \$320	\$0.68 \$2.28 \$1.92 \$0.98	Minimal Minimal Minimal Minimal
Linden Gregg County Clarksville City Liberty City WSC West Gregg SUD Starrville-Friendship WSC Harrison County Waskom Blocker-Crossroads WSC Caddo Lake WSC	1,148 5,647 4,233 1,574 3,485 1,010 1,249 2,161 871	1,682 8,485 6,382 2,386 4,240 1,225 1,515 3,139	148 287 56 0 54 100	217 678 333 101 151	162 376 70 0 88	242 752 350 108	217 753 350	\$1,518,443 \$2,096,569 \$1,502,847	\$150,043 \$271,451 \$166,524	\$743 \$627 \$320	\$2.28 \$1.92 \$0.98	Minimal Minimal Minimal
Gregg County Clarksville City Liberty City WSC West Gregg SUD Starrville-Friendship WSC Harrison County Waskom Blocker-Crossroads WSC Caddo Lake WSC	1,148 5,647 4,233 1,574 3,485 1,010 1,249 2,161 871	1,682 8,485 6,382 2,386 4,240 1,225 1,515 3,139	148 287 56 0 54 100	217 678 333 101 151	162 376 70 0 88	242 752 350 108	217 753 350	\$1,518,443 \$2,096,569 \$1,502,847	\$150,043 \$271,451 \$166,524	\$743 \$627 \$320	\$2.28 \$1.92 \$0.98	Minimal Minimal Minimal
Clarksville City Liberty City WSC West Gregg SUD Starrville-Friendship WSC Harrison County Waskom Blocker-Crossroads WSC Caddo Lake WSC	5,647 4,233 1,574 3,485 1,010 1,249 2,161 871	8,485 6,382 2,386 4,240 1,225 1,515 3,139	287 56 0 54 100	678 333 101 151	376 70 0 88	752 350 108	753 350	\$2,096,569 \$1,502,847	\$271,451 \$166,524	\$627 \$320	\$1.92 \$0.98	Minimal Minimal
Liberty City WSC West Gregg SUD Starrville-Friendship WSC Harrison County Waskom Blocker-Crossroads WSC Caddo Lake WSC	5,647 4,233 1,574 3,485 1,010 1,249 2,161 871	8,485 6,382 2,386 4,240 1,225 1,515 3,139	287 56 0 54 100	678 333 101 151	376 70 0 88	752 350 108	753 350	\$2,096,569 \$1,502,847	\$271,451 \$166,524	\$627 \$320	\$1.92 \$0.98	Minimal Minimal
West Gregg SUD Starrville-Friendship WSC Harrison County Waskom Blocker-Crossroads WSC Caddo Lake WSC	4,233 1,574 3,485 1,010 1,249 2,161 871	6,382 2,386 4,240 1,225 1,515 3,139	56 0 54 100	333 101 151	70 0 88	350 108	350	\$1,502,847	\$166,524	\$320	\$0.98	Minimal
Starrville-Friendship WSC Harrison County Waskom Blocker-Crossroads WSC Caddo Lake WSC	1,574 3,485 1,010 1,249 2,161 871	2,386 4,240 1,225 1,515 3,139	0 54 100	101	0	108						
Harrison County Waskom Blocker-Crossroads WSC Caddo Lake WSC	3,485 1,010 1,249 2,161 871	4,240 1,225 1,515 3,139	54 100	151	88		108	\$316,158	\$39,355	\$259	\$0.79	Minimal
Waskom Blocker-Crossroads WSC Caddo Lake WSC	1,010 1,249 2,161 871	1,225 1,515 3,139	100			470						
Blocker-Crossroads WSC Caddo Lake WSC	1,010 1,249 2,161 871	1,225 1,515 3,139	100			470						
Caddo Lake WSC	1,249 2,161 871	1,515 3,139		128		176	176	\$455,466	\$62,041	\$854	\$2.62	Minimal
	2,161 871	3,139	19		129	129	129	\$483,057	\$57,029	\$306	\$0.94	Minimal
Leigh WSC	871			52	43	86	86	\$227,734	\$30,667	\$260	\$0.80	Minimal
			0	36	0	43	43	\$139,610	\$17,202	\$282	\$0.87	Minimal
Scottsville	1,664	1,057	0	7	0	65	65	\$165,953	\$23,173	\$265	\$0.81	Minimal
Talley WSC		2,020	97	142	118	177	177	\$760,772	\$84,382	\$320	\$0.98	Minimal
Hopkins County												
Miller Grove WSC	1,218	1,071	24	6	35	35	35	\$479,955	\$40,669	\$955	\$2.93	Minimal
Hunt County												
	1,303	5,917	101	773	108	108	108	\$618,674	\$61,950	\$366	\$1.12	Minimal
	3,664	12,508	271	1,667	2,702	1,882	1,882	\$6,880,290	\$808,680	\$909	\$2.79	Minimal
West Leonard WSC	72	245	5	28	81	81	81	\$890,430	\$79,319	\$580	\$1.78	Minimal
Smith County												
Crystal Systems, Inc.	4,357	6,649	0	425	0	538	538	\$992,200	\$160,368	\$485	\$1.49	Minimal
	3,086	4,709	0	189	0	215	215	\$316,158	\$57,022	\$265	\$0.81	Minimal
	4,201	7,010	0	374	0	376	376	\$510,648	\$96,693	\$257	\$0.79	Minimal
Star Mountain WSC	1,516	2,313	0	83	0	108	108	\$316,158	\$39,987	\$265	\$0.81	Minimal
Upshur County												
Pritchett WSC	6,478	6,998	0	51	0	54	54	\$270,925	\$28,186	\$341	\$1.05	Minimal
Van Zandt County												
Bethel Ash WSC	617	797	0	17	0	81	81	\$337,913	\$37,308	\$513	\$1.57	Minimal
	4,012	4,613	217	349	291	387	387	\$1,229,656	\$150,596	\$365	\$1.12	Minimal
Grand Saline	3,863	4,560	143	255	323	323	323	\$574,243	\$99,100	\$232	\$0.71	Minimal
	2,021	2,610	30	99	37	102	102	\$574,243	\$51,911	\$491	\$1.51	Minimal
	1,170	1,511	0	23	0	27	27	\$281,295	\$24,681	\$1,371	\$4.21	Minimal
Crooked Creek WSC	932	1,204	21	56	59	59	59	\$212,882	\$24,824	\$348	\$1.07	Minimal
	1,372	1,771	34	86	43	86	86	\$661,715	\$61,668	\$657	\$2.02	Minimal
	4,010	5,179	119	269	129	301	301	\$1,944,744	\$190,656	\$798	\$2.45	Minimal
Little Hope-Moore WSC	2,211	2,855	78	161	113	188	188	\$1,395,045	\$135,877	\$754	\$2.31	Minimal
Wood County												
Mineola	6,814	6,858	374	360	403	403	403	\$243,334	\$81,544	\$202	\$0.62	Minimal
Yantis * O&M Cost + Power Cost + (Tota	633	637	20	18	38	38	38	\$227,734	\$22,938	\$603	\$1.85	Minimal

(from Region D Water Plan - Appendix A, Chapter 4 Appendix, January 5, 2006, BWR and others)

* O&M Cost + Power Cost + (Total Capital Costs debt service factor, 30 yrs @ 6%)

3.3 Review of Water System Surveys from Previous Planning Cycle

Water system surveys from the 2006 Regional Water Plan (147 surveys of individual WUGs) were reviewed to identify specific potential users of brackish groundwater. Results of this review are summarized in various tables within Appendix A. The review of the water system surveys serves to identify the specific additional potential users of brackish groundwater and focused on the following areas:

- non-residential users
- users with changes in water quality or quantity
- users with average water rates above \$50.00 per 10,000 gallons
- users with planned expansions

A summary of non-residential user types in Region D is as follows:

User Type	Number of Users	Usage, MG/Yr.
Commercial	11	28
Institutional	6	54
Industrial	15	1,556
Livestock/Dairy	10	11
Manufacturing	23	1,871
Oil/Gas	1	20
Plant Farm	2	2
Recreational/RV Park	2	4
Wholesale/Water Supply	13	693
Totals	83	4,239

Table 3: Non-Residential Users Types in Region D (Responses to 2006 Water Plan Survey)

While Wholesale/Water Supply is listed above, it is assumed that the vast majority of these users are residential. Therefore, the two top non-residential uses of water are industrial and manufacturing (based on 2006 Water Plan Surveys), which constitute approximately 81% of non-residential water use in the region.

3.3.1 Non-Residential Potential Users

Major non-residential users were identified and contacted to explore the potential use of treated or non-treated brackish groundwater. Generally, the responses to using non-treated brackish groundwater were negative. Treated brackish groundwater was considered generally more expensive and, therefore, not a consideration for the respondents. Example responses are as follows:

• Steam-Electric Industry – A representative of steam-electric, and a voting member of the NETRWPG, stated that water with constituents similar to brackish groundwater, such as

higher TDS levels, create significant scaling and corrosion problems, often requiring equipment to be manufactured of stainless steel or other more expensive metals. Additionally, the volume of water needed is a concern. If treated brackish groundwater is used, the cost of treatment and the volume of waste concentrate brine make brackish groundwater an unfavorable option for steam-electric power generation.

- Food and Beverage Processing A representative of Ocean Spray in Hopkins County, who currently receives treated surface water from the City of Sulphur Springs, stated water is the essential ingredient of their product and they use additional treatment/purification methods. The representative stated that his business was far too particular about water quality to entertain the idea of using brackish water.
- Manufacturing Rubbermaid in Hunt County receives Lake Tawakoni water via the City of Greenville. The facilities manager stated that water quality is a significant factor of the injection mold process and was emphatically opposed to the idea of using non-treated brackish groundwater.
- Manufacturing Air Liquide in Gregg County receives City of Longview water. The water quality concerns of Air Liquide are very similar to those of the steam-electric industry. The representative stated "we have to watch our solids very closely" and was not interested in brackish water due to the boiler feed water quality specifications and the cooling tower characteristics.
- Manufacturing A representative of Rexam, a manufacturer of beverage cans and plastic packaging, stated that "entertaining different water would not make a significant difference in our bottom-line, therefore, we would not be interested." Rexam is also in Gregg County and receives treated surface water from the City of Longview.
- Manufacturing A facilities manager from Eastman in Longview stated that they are not interested in using treated or non-treated brackish groundwater. Their processes and equipment are too sensitive to TDS. The representative stated that treated brackish groundwater is not cost effective.
- Food and Beverage Processing A consultant for Pilgrim's Pride (poultry processing) stated that because of water quality and current abundance of water there would be no interest on their part to use untreated or treated brackish groundwater.

Representatives from the livestock, dairy, institutional or other non-residential users could not be reached for this survey. The survey summaries with contact information are included at the end of Appendix A.

3.3.2 Users with Changes in Water Quality or Quantity

Nine WUGs using well water in Region D identified a change in water quality and/or quantity in the surveys from the previous planning cycle. Two of these entities indentified an increase in

sodium or TDS levels and seven identified a decrease in quantity (a drop in static ground water levels or lower gpm production).

These include the following systems:

- Redwater Water and Sewer Co., Bowie County
- City of Bogata, Red River County
- City of Clarksville, Red River County
- Red River County WSC, Red River County
- City of Gilmer, Upshur County
- Rosewood, Upshur County
- City of Canton, Van Zandt County
- New Hope WSC, Wood County
- Yantis WSC, Wood County

Notably, these water suppliers' costs per 10,000 gallons ranged between a low of \$33.00 to a high of \$43.50, which are on the higher end of overall rates in Region D.

The City of Clarksville has expressed a desire to implement RO treatment of its groundwater. Clarksville gets up to 1 million gallons per day from Langford Lake and supplements it with three groundwater wells. The well water contains higher than desired levels of TDS (~1,083 mg/l) and other constituents, such as sodium (~300 mg/l) and chloride (~ 233 to 300 mg/l, but often over 300 mg/l). The City's blending operations allow them to use this water to supplement the surface water. However, on peak days the water quality becomes more of a concern. The City's Director of Water and Wastewater Plants, Mr. Daniel Rapien, expressly stated that the City is very interested in adding an RO system. However, their constraint is funding. The City of Clarksville is the one WUG this report specifically recommends for a brackish groundwater project. If Clarksville transferred completely to groundwater, they would need five wells, at approximately 335 gpm per well. While this is not necessarily their desire, their intent is to continue to supplement the lake water albeit with a higher quality groundwater, the calculation would be as follows:

- 1,440 connections x 0.6 gpm / connection x 60 min / hr x 24 hrs / day = 1.24 MGD
- Their current wells range between 320 and 350 gpm, therefore, 335 gpm is used as an average. The RO system will produce approximately 80% of each well capacity; therefore, 335 gpm becomes 268 gpm. Using the minimum requirements (0.6 gpm) and multiplying by a factor of safety of 1.5, results in 0.9 gpm, 1.24 MGD becomes 1.86 MGD. During peak days a few times a year each well could yield 385,920 gallons after RO treatment. Therefore, five wells producing an average of at least 335 gpm would be required.

3.3.3 Users with Average Water Rates above \$50 per 10,000 Gallons

Review of the water surveys from the last 2006 planning cycle identified sixteen WUGs with rates greater than \$50 per 10,000 gallons (five entities were above \$60 per 10,000 gallons). Fifty dollars per 10,000 gallons was used as a threshold rate where the treatment of brackish groundwater may become financially viable, as this is currently the approximate cost of providing treated brackish groundwater.

The systems, with their respective rates, above \$50/10,000 gallons are as follows:

- City of Reno, Lamar County, \$50.07
- Tryon Road SUD, Gregg County, \$51.00
- City of Quitman, Wood County, \$51.46
- City of Caddo Mills, Hunt County, \$51.84
- Central Bowie Co. WSC, Bowie County, \$52.00
- Mims WSC, Marion County, \$52.26
- City of Edgewood, Van Zandt County, \$57.31
- City of Deport, Lamar County, \$57.50
- MACBEE SUD, Van Zandt County, \$57.99
- South Tawakoni WSC, Van Zandt County, \$58.79
- Woodland Estates, Bowie County, \$59.99
- 410 WSC, Red River County, \$61.29
- City of Lone Oak, Hunt County, \$61.94
- Pritchett WSC, Upshur County, \$63.32
- City of Hallsville, Harrison County, \$65.00
- Combined Consumers WSC, Hunt County, \$65.48

These 16 represent an even split of entities that treat water and those that purchase water. Three of the entities currently use groundwater and the remaining 13 use surface water. Ten of the Region's 19 counties are represented in this group and are geographically well distributed throughout the North East Region. All of the WUGs listed in sections 3.3.2 and 3.3.3 should be considered as WUGS with potential brackish groundwater projects that could be incorporated into the Regional Plan.

3.4 Brackish Groundwater in Texas and in the North East Texas Region

The following map (Figure 4) from Guyton 2003 illustrates the known occurrence of brackish groundwater in Texas. The results of Guyton's study have been obtained from TWDB and overlaid with the regional map and with the county maps that contain the WUGs indicated above that have groundwater strategies for projected actual shortages. The maps are included on the following pages. The one regional map (Figure 5) and ten county maps (Figure 6 - 15) presented contain the 32 WUGs with "actual" shortages that have identified groundwater as a strategy and indicate the proximity of the WUGs to the water quality data obtained from TWDB's Guyton 2003 study.

Mr. Stan Hayes, P.E., of Hayes Engineering, Inc., consultant for the 2006 Regional Water Plan and the 2008 Specific Studies, who primarily consults in the southern portion of Region D, reports most of the brackish water is from the Wilcox that intermingles with the Carrizo. The Queen City is at a depth of 300 to 400 feet and it is potable water. The Carrizo is 500 to 700 feet and it is for the most part potable especially at the shallower depths (as it mingles with the Wilcox its salinity increases). The Wilcox is from 700 feet and deeper, but does migrate up to the Carrizo. Mr. Hayes stated the counties that have brackish water are generally south and east of Interstate Highway 30 (IH-30). The counties where he is working on water supply are Harrison, Gregg, Marion, Cass, Camp, Morris and Upshur. As a general rule if there is oil in the area then there is also brackish water.

Examples of brackish groundwater wells for which Hayes Engineering is familiar are as follows:

East Mt. WSC	Upshur County	300+ gpm
Harleton WSC	Harrison County	300+ gpm
West Harrison WSC	Harrison county	300+ gpm

Hayes also reports that brackish groundwater generally exists in the Bi-County WSC WUG (Camp, Upshur and Morris counties) and in Marion County.

Mr. Reeves Hayter, P.E., of Hayter Engineering, Inc., also consultant for the 2006 Regional Water Plan and the 2008 Specific Studies, primarily consults in the northern portion of Region D. He reports that generally groundwater wells are not drilled north of IH-30 due to low production rates and the prevalence of surface water. Most of the wells north of IH-30 produce 100 to 150 gpm wells. Also, there are few oil wells in which to dispose the brine. The water systems in Lamar County where the cost of water is above \$50 for 10,000 gallons per month mostly purchase from Lamar County WSC. The WSCs in Lamar County once had wells but gave them up due to poor quality or lack of production of potable water. Delta County is one area where they do not consider drilling due to groundwater is typically 2000 feet deep and is brackish.

LBG-Guyton Associates, Inc. has performed an evaluation of the brackish groundwater supply in the Region D area for this report. The TWDB data was searched and parsed for relevant information on brackish groundwater. Information in this database is populated from data obtained by well driller reports, pumping test results, water quality analyses and other pertinent information obtained by TWDB through reliable sources.

In general, brackish groundwater is found in the down-dip limits of the aquifers in the region. Aquifers with brackish water include the Cretaceous aquifers of Nacatoch, Blossom, Woodbine and the Paluxy and Twin Mountain of the Trinity Aquifer (Figure 16). Brackish water can also be found in some of the deeper Wilcox portion of the Carrizo-Wilcox aquifer (Figure 16). Most wells found in the southeastern portion of the Region D area are completed into the Tertiary age, Carrizo and Queen City Sands that generally produce freshwater.

Six geophysical logs were obtained from the Surface Casing Division of the Texas Commission of Environmental Quality representing the different aquifers with known brackish water. These

logs are made from oil field test wells that span a number of the shallower aquifers. The state identification numbers for those wells are: 17-29-202, 17-21-807, 17-22-404, 16-33-601, 34-02-702, and 35-33-602 (Figure 16). Logs found in the northern portion of Region D show the Cretaceous aquifers and logs in the southern area show the Carrizo-Wilcox Aquifer. Based on review of geophysical logs in the area, brackish water is generally found in strata at depths less than 2,000 feet.

An evaluation of these logs indicates only a portion of each geologic unit is capable of producing significant water. The Cretaceous aquifers only have small footage intervals of sand or limestone that can actually produce water. The Wilcox aquifer generally has a variety of sandy layers that can produce water. Throughout the total thickness of the geologic unit, a variety of water quality can be interpreted from any particular sand interval on the geophysical log. Depending on the interval that is screened and open to produce water to the well will determine the overall average chemistry from a particular well. Generally, deeper sands have lower resistivities on the geophysical log, which correspond to higher TDS content of the water produced from those intervals.

Based on these logs and other wells completion information, wells completed in the Cretaceous aquifers (Nacatoch, Blossom, Woodbine and the Paluxy and Twin Mountain of the Trinity Aquifer) generally produce lower volumes often less than 50 gallons per minute (gpm) with one reported as high as 120 gpm completed into the Blossom Aquifer. Wells completed into the Wilcox generally have higher reported yields ranging up to about 600 gpm. However, a practical expectation for Wilcox brackish wells is about 100 to 300 gpm.

Brackish wells could be developed in the Woodbine and Trinity aquifers in Lamar and Red River Counties. Experience in Texas indicates that each brackish groundwater wellfield needs to be evaluated individually to identify specific water quality characteristics and well production capacity. It is possible to find brackish groundwater in most of the down-dip sections of the Nacatoch aquifer, but especially in Hunt, Hopkins, and Bowie Counties. In the Carrizo and Wilcox aquifers, there are zones of brackish groundwater in many Region D counties where the aquifers exists. Generally, the brackish groundwater will be found in the deeper section of the aquifers, but there are exceptions to this general rule.

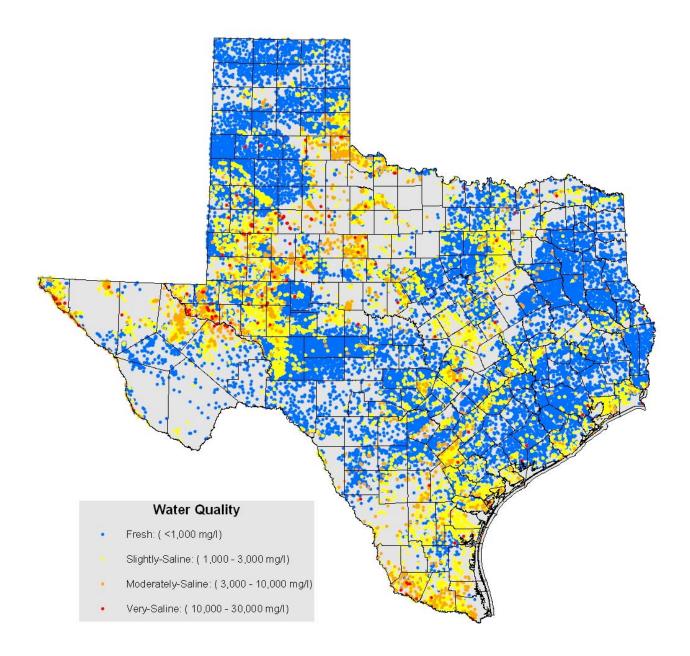


Figure 4: Distribution of Brackish Groundwater in Texas (Guyton 2003)

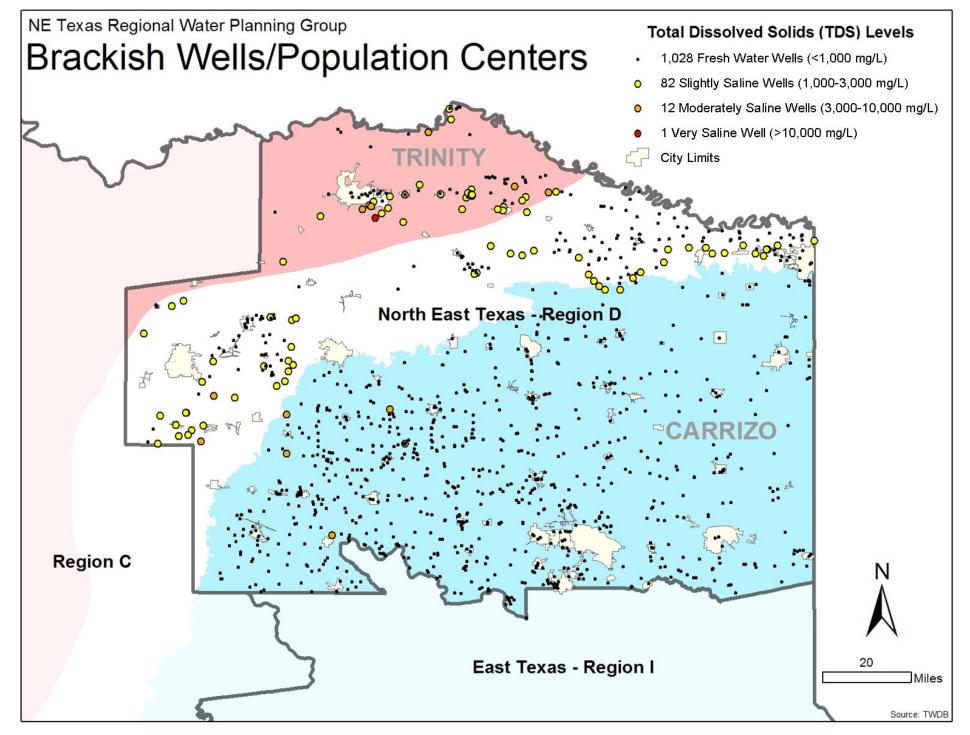


Figure 5: Brackish Wells/Population Centers 24

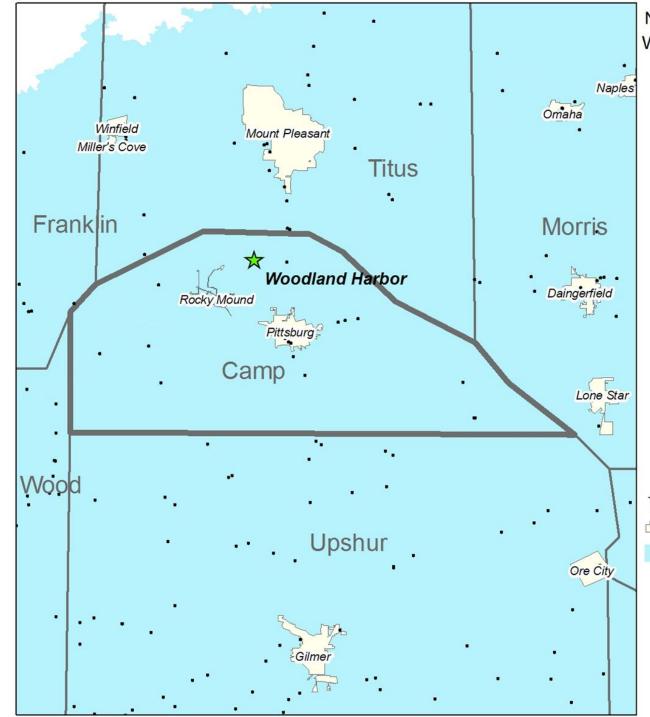


Figure 6:

Camp County 25 NE Texas Regional Water Planning Group Water User Groups with Actual Shortages

Camp County

Actual Water Shortage (ac-ft/yr)

Water User Group	Shortage 2030	Shortage 2060
Woodland Harbor	65	65

Total Dissolved Solids (TDS) Levels

- 1,028 Fresh Water Wells (<1,000 mg/L)
- 82 Slightly Saline Wells (1,000-3,000 mg/L)
- 12 Moderately Saline Wells (3,000-10,000 mg/L)
- 1 Very Saline Well (>10,000 mg/L)
- 🛠 Water User Groups with Actual Shortages
 - City Limits

Carizzo Aquifer

Source: TWDB

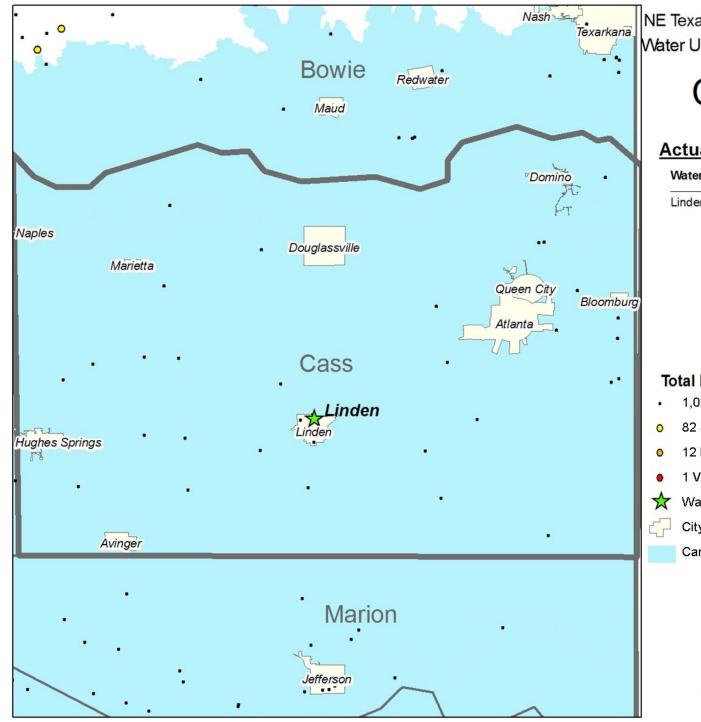
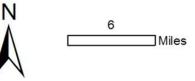


Figure 7:

Cass County

26

NE Texas Regional Water Planning Group Water User Groups with Actual Shortages


Cass County

Actual Water Shortage (ac-ft/yr)

Water User Group	Shortage 2030	Shortage 2060
Linden	215	215

Total Dissolved Solids (TDS) Levels

- 1,028 Fresh Water Wells (<1,000 mg/L)
- 82 Slightly Saline Wells (1,000-3,000 mg/L)
- 12 Moderately Saline Wells (3,000-10,000 mg/L)
- 1 Very Saline Well (>10,000 mg/L)
- ☆ Water User Groups with Actual Shortages
- City Limits
 - Carizzo Aquifer

Source: TWDB

NE Texas Regional Water Planning Group Water User Groups with Actual Shortages

Gregg County

Actual Water Shortage (ac-ft/yr)

Water User Group	Shortage 2030	Shortage 2060
Clarksville City	162	242
Liberty City WSC	376	752
West Gregg SUD	70	350
Starrville-Friendship WSC	0	108

Total Dissolved Solids (TDS) Levels

- 1,028 Fresh Water Wells (<1,000 mg/L)
- 82 Slightly Saline Wells (1,000-3,000 mg/L)
- 12 Moderately Saline Wells (3,000-10,000 mg/L)
- 1 Very Saline Well (>10,000 mg/L)
- ☆ Water User Groups with Actual Shortages
- City Limits
 - Carizzo Aquifer

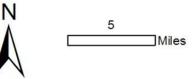
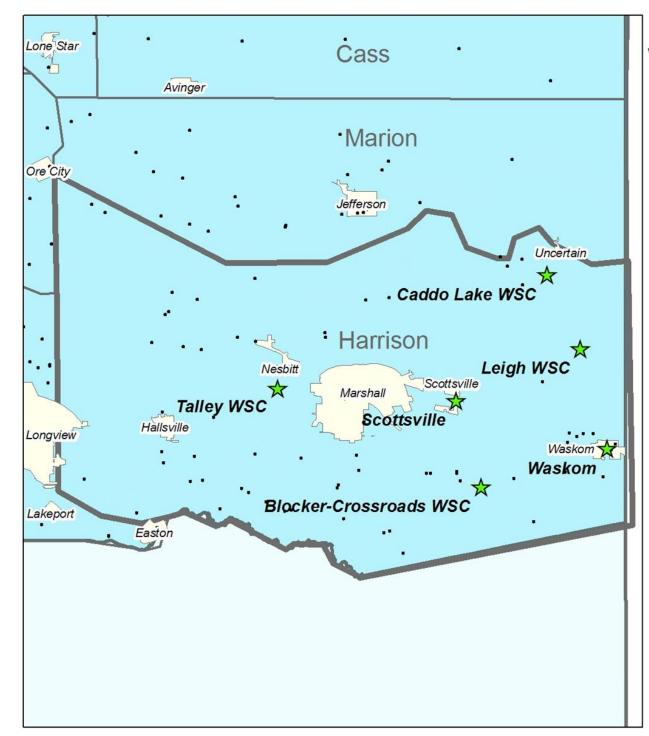
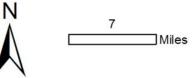



Figure 8: Gregg County 27

NE Texas Regional Water Planning Group Water User Groups with Actual Shortages


Harrison County

Actual Water Shortage (ac-ft/yr)

Water User Group	Shortage 2030	Shortage 2060
Blocker-Crossroads WSC	129	129
Caddo Lake WSC	43	86
Leigh WSC	0	43
Scottsville	0	65
Talley WSC	118	177
Waskom	88	176

Total Dissolved Solids (TDS) Levels

- 1,028 Fresh Water Wells (<1,000 mg/L)
- 82 Slightly Saline Wells (1,000-3,000 mg/L)
- 12 Moderately Saline Wells (3,000-10,000 mg/L)
- 1 Very Saline Well (>10,000 mg/L)
- ☆ Water User Groups with Actual Shortages
- City Limits
 - Carizzo Aquifer

Source: TWDB

Figure 10: Hopkins County 29

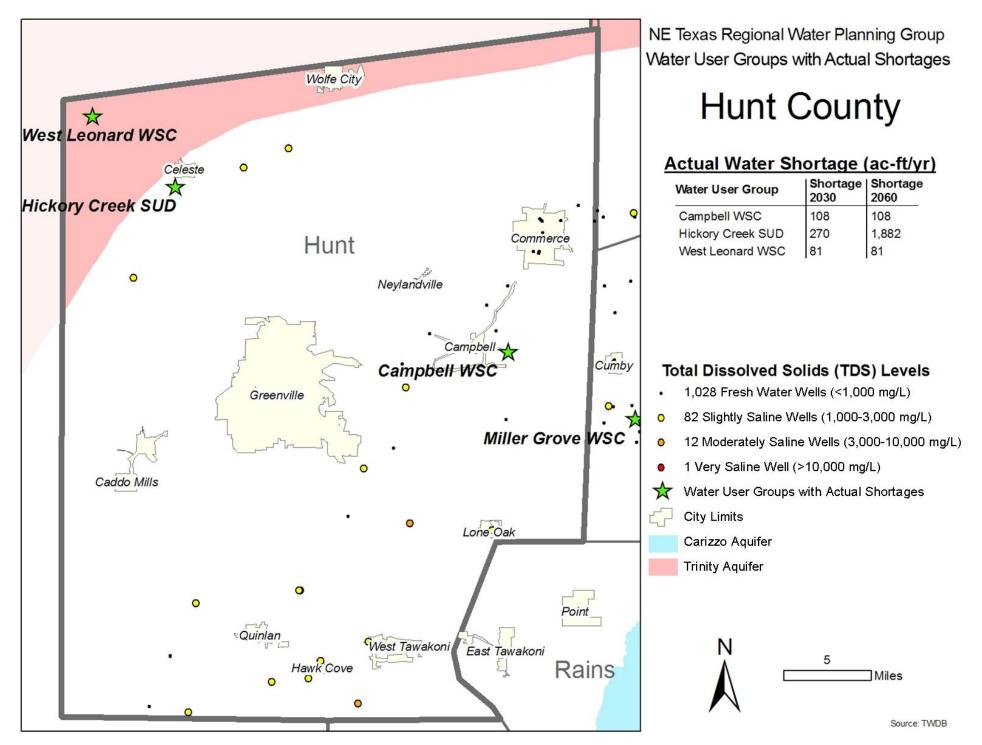
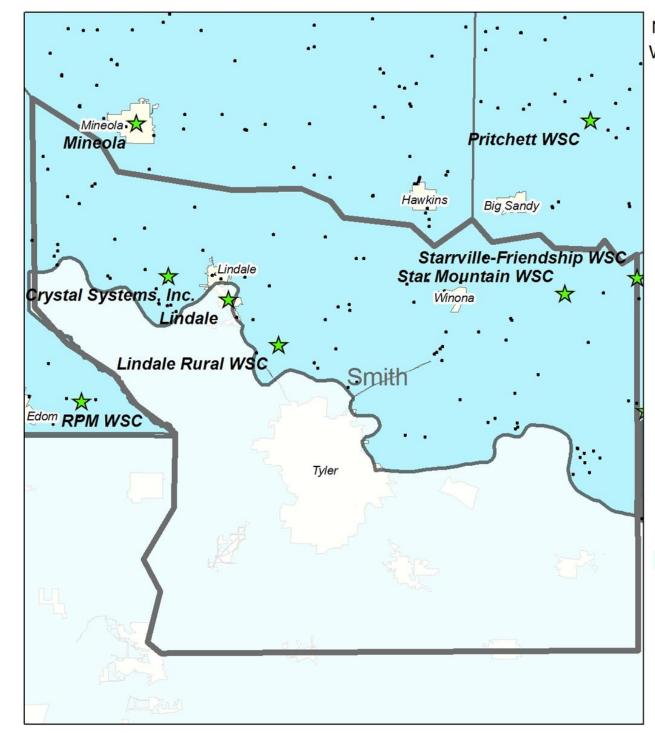



Figure 11: Hunt County 30

NE Texas Regional Water Planning Group Water User Groups with Actual Shortages

Smith County

Actual Water Shortage (ac-ft/yr)

Water User Group	Shortage 2030	Shortage 2060
Crystal Systems, Inc.	0	538
Lindale	0	376
Lindale Rural WSC	0	215
Star Mountain WSC	0	108

Total Dissolved Solids (TDS) Levels

- 1,028 Fresh Water Wells (<1,000 mg/L)
- 82 Slightly Saline Wells (1,000-3,000 mg/L)
- 12 Moderately Saline Wells (3,000-10,000 mg/L)
- 1 Very Saline Well (>10,000 mg/L)
- Water User Groups with Actual Shortages
- City Limits
 - Carizzo Aquifer

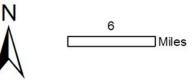


Figure 12: Smith County 31

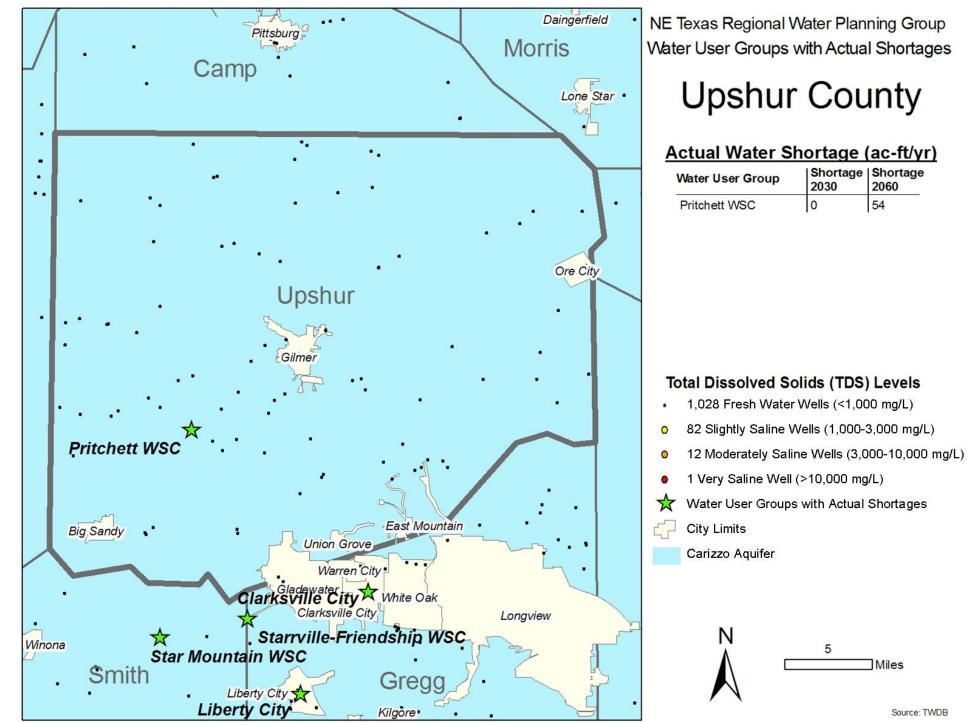
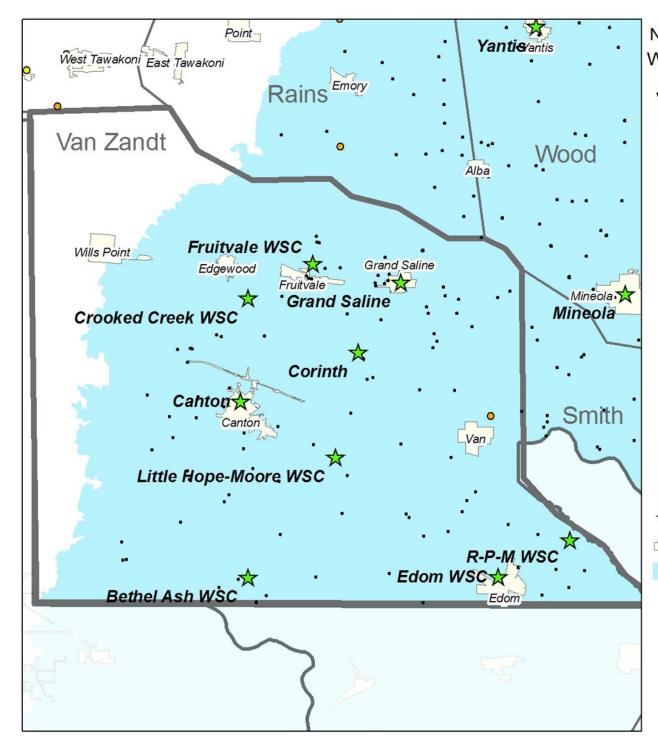



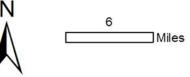
Figure 13: Upshur County 32

Source: TWDB

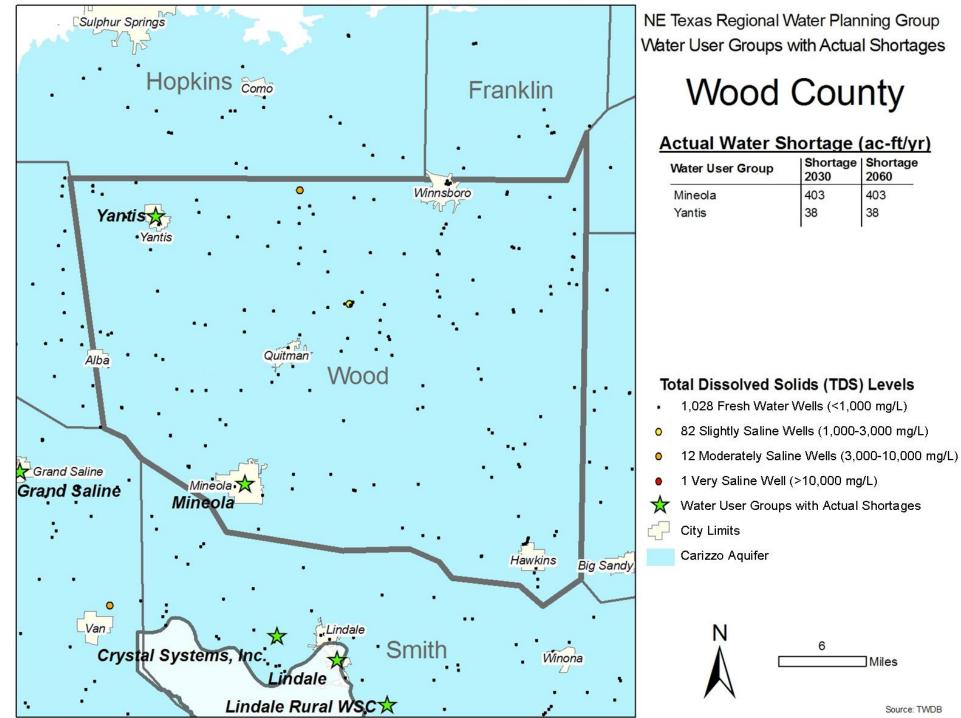
NE Texas Regional Water Planning Group Water User Groups with Actual Shortages

Van Zandt County

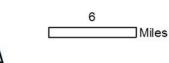
Actual Water Shortage (ac-ft/yr)


Water User Group	Shortage 2030	Shortage 2060
Bethel Ash WSC	0	81
Canton	291	387
Corinth WSC	0	27
Crooked Creek WSC	59	59
Edom WSC	96	124
Fruitvale WSC	129	301
Grand Saline	323	323
Llittle Hope-Moore WSC	113	188
R-P-M WSC	37	102

Total Dissolved Solids (TDS) Levels


- 1,028 Fresh Water Wells (<1,000 mg/L)
- 82 Slightly Saline Wells (1,000-3,000 mg/L)
- 12 Moderately Saline Wells (3,000-10,000 mg/L)
- 1 Very Saline Well (>10,000 mg/L)
- Water User Groups with Actual Shortages

City Limits


Carizzo Aquifer

Source: TWDB

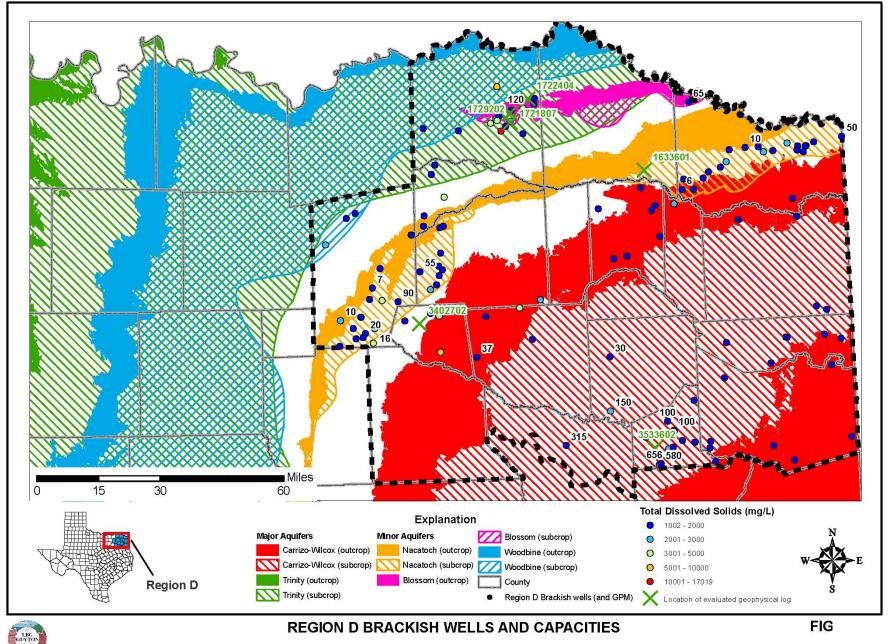
Water User Groups with Actual Shortages

Shortage

2030

403

38


Shortage

2060

403

38

Source: TWDB

EBG-GUYTON ASSOCIATES

3.5 Disposal of Desalination Concentrate

Concentrate disposal can represent a primary cost item of utilizing brackish groundwater. There are often environmental and legal constraints against discharging liquid wastes from a desalting plant into surface waters or underground (USBOR 2003). There are five major methods of concentrate disposal: 1) disposal to wastewater treatment plants, 2) disposal to surface waters, 3) deep-well injection, 4) evaporation ponds and 5) evaporation to dryness (crystallization). Others methods that have been utilized but are less attractive include land application, including treatment wetlands, and other developing technologies. TWDB reports that of based on information collected from 38 public drinking water facilities that desalinate brackish groundwater, about 37% of the plants discharge to a surface water body, 24% to a municipal sewer, 21% discharge to an evaporation pond, about 13% utilize land application and about 5% remain unknown. At least one facility, the Kay Bailey Hutchinson (El Paso-Fort Bliss) Desalination Facility is using deep well injection (USEPA Class V injection well) to dispose of concentrates from desalination. The plant came online on August 8, 2007 and it is the first such plant in Texas to use this disposal option.

3.6 Please Pass the Salt Study

Of the various disposal options, this study specifically investigated the potential of deepwell injection by reviewing the TWDB report Please Pass the Salt: Using Oil Fields for the Disposal of Concentrate from Desalination Plants, TWDB Report 366, by Robert E. Mace, Ph.D., P.G. and others. Dr. Mace, Director of the Groundwater Resources Division of TWDB, and others provide an in-depth investigation of the possibility of injecting concentrate into oil and gas fields where formation pressures have been greatly lowered due to past oil and gas production. The authors believe that the cost of concentrate disposal could be reduced if water users could dispose of concentrate down the same or similarly equipped wells that accept oil field brines (TWDB 2006). However, the report highlights the fact that Texas permitting does not specifically allow for desalination disposal via deep-well injection. Instead, desalination plant operators are expected to apply for a Class I permit, which can require millions of dollars and years to permit, instead of using a Class II permitted well, which only requires thousands of dollars and months to permit (TWDB 2006). Class I wells are designed to inject fluids of hazardous, industrial or other domestic wastes beneath the lowermost formation containing an underground source of drinking water that lies within a ¹/₄ mile of the well bore. Class II wells are designed to inject fluids that are brought to the surface in connection with oil and gas exploration or the storage of hydrocarbons (TWDB 2006).

Oil and gas fields exist in much of Texas requiring disposal of brine. Producers need to dispose of the brine that is associated with oil and gas production and therefore inject it back into the field (TWDB 2006). In Texas, there are over 31,000 active permitted injection wells in oil and gas fields and these fields are likely to be near sources of brackish water.

The East Texas Basin was one of six analysis areas of the *Please Pass the Salt* study (Figure 17). The authors (Mace and others, 2006) state that the selection of the analysis areas was based on the location of (1) mature oil and gas fields (Figure 18), (2) oil and gas fields from various geological basins (Figure 19), (3) Class II injection wells (Figure 20), (4) areas with unmet water needs (Figure 21) or an interest in desalination to meet future water needs, and (5) available brackish groundwater resources (Figures 4 and 17). Based on these maps and additional criteria, such as available brackish groundwater resources and general characterization, the authors identified the six analysis areas from different basins across the state. The basins considered include the Anadarko basin, the East Texas basin, the Permian basin, the Gulf Coast basin, the Fort Worth basin, and the Maverick basin. These analysis areas are representative of Texas basins; reservoirs; and brackish and formation waters; and are representative of typical scenarios in the rest of the State (TWDB 2006).

In the NETRWPA there are locations where brackish water samples were tested by TWDB 2006. These show there is a good supply of brackish water in the NETRWPA. The locations of these samples are shown in Figure 22.

The conclusions of *Please Pass the Salt* are summarized in the Figure 23 along with the locations of identified major oil and gas reserves in NETRWPA. In the table included in Figure 23 (*Pass the Salt* Summary of Conclusions), the East Texas study area received "High" relative scores in the categories of injection rate and pressure depletion, a "Medium" relative score for scaling and a "Low" relative score for water sensitivity. The East Texas study area had the highest median injection rate at approximately 466 gallons per minute (gpm). The low relative score for water sensitivity rating indicates concentrate injection in the East Texas Basin could present a challenge. However, the report concludes that with careful analysis and pretreatment of the concentrate, if necessary, injection into the North East Region is very feasible.

Table 4 demonstrates the relative proximity of WUGs to oil and gas fields. Nineteen of the 32 WUGs with actual shortages are within five miles of oil and gas fields and received a "High" rating for Relative Estimated Likelihood of Use for well injection. This suggests that siting of wells or transportation of concentrate would be less expensive and therefore more likely for these WUGs. These include WUGs in the counties of Cass, Gregg, Harrison, Smith, Upshur and Van Zandt (see Table 4).

Please Pass the Salt concludes by stating that injection of desalination concentrate into oil and gas field is technically feasible and recommends several options for making the permitting process easier and more affordable.

An update to this aspect is that the TCEQ is proposing to issue a general permit (Proposed General Permit No. WDWG010000) authorizing the use of a Class I injection well to dispose of nonhazardous brine from a desalination operation or nonhazardous drinking water treatment residuals. It is unclear to what level of improvement this will afford, but Mace in TWDB 2006 states, "A general permit would greatly simplify and decrease the time to attain a Class I permit. A general permit would involve getting a

permit for a general class of injection wells. In this case, the general class of wells would be concentrate injection wells. Approval of the general permit requires going through the full approval process of a Class I injection well. Once a general permit is attained, anyone can apply for a permit under the general permit. If those permits meet the requirements set forth in the general permit, then the permit is granted. The advantage of the general permit is that it reduces the permitting process to an administrative review. If the application meets the requirements set forth in the general permit, it might take as little as 60 days for a complete application. Implementation of a general permit would require approval of the concept of general permitting by TCEQ." The notice for public comment on the proposed general permit is attached in Appendix D. More information can be found at http://www.tceq.state.tx.us/permitting/waste_permits/advgroups/uicgp.html

3.7 WUG Proximity to Oil/Gas Reserves and Known Brackish Groundwater Study

The prevalence of oil and gas well fields was examined by referencing information contained in TWDB 2006 and Guyton 2003. The proximity of oil and gas fields in relation to WUGs with Actual Shortages was analyzed with results presented in Table 4 (page 46). This listing indicates the relative feasibility – high, moderate, or low - of a WUG using depleted or non-producing oil or gas wells for the injection of brine concentrate, based on physical distance. Eighteen of the 32 WUGs with Actual Shortages appear to existing within five miles of oil or gas reserves. This analysis assumes that regulations pertaining to the injection of brine concrete become less onerous in the future.

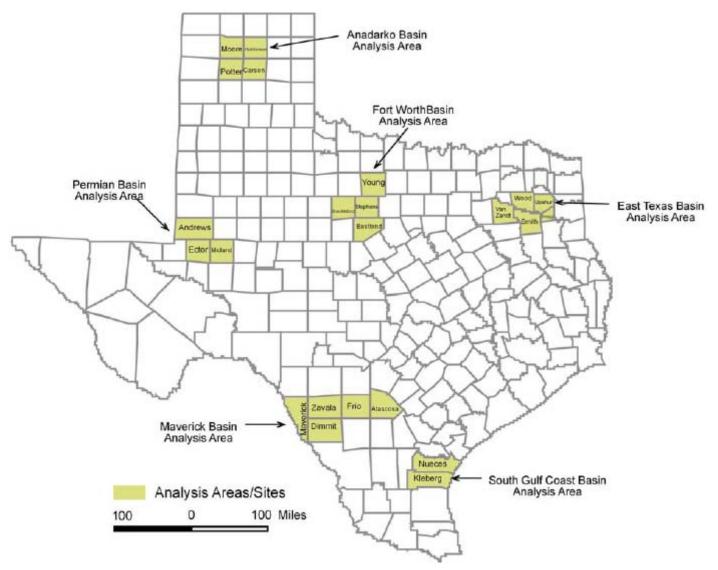


Figure 17: Locations of analysis areas (TWDB 2006)

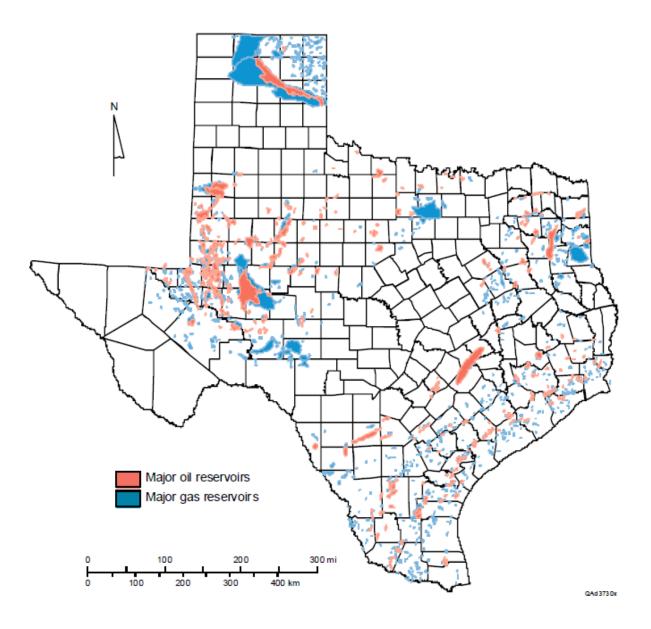


Figure 18: Location of major oil and gas reservoirs in Texas. (TWDB 2006)

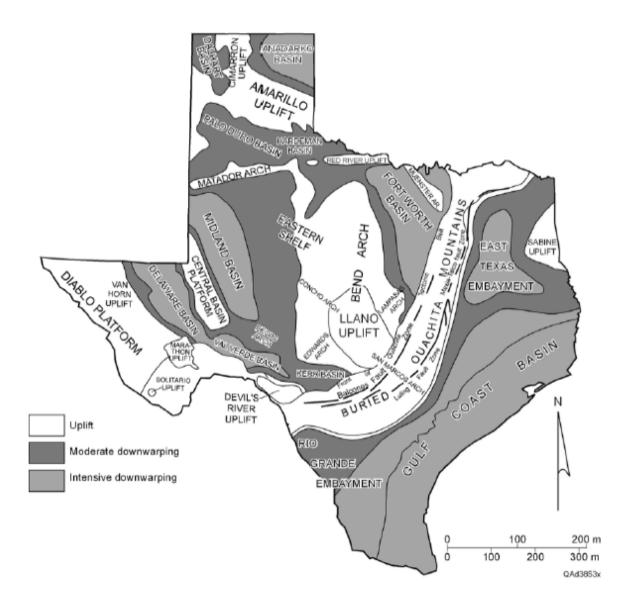
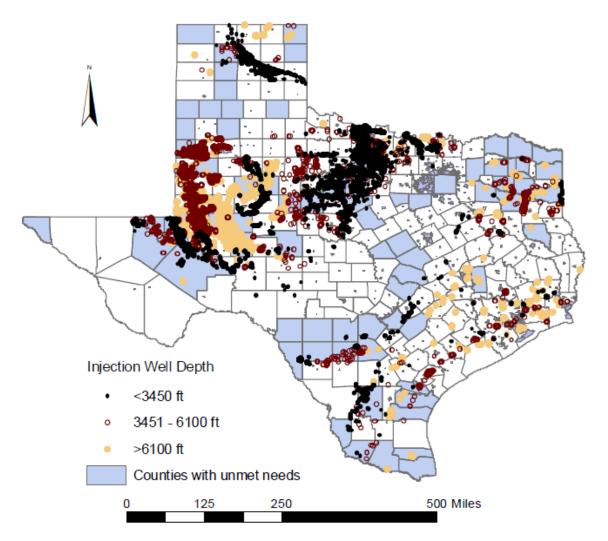



Figure 19: Generalized tectonic map of Texas showing location of sedimentary basins (TWDB 2006)

Note: Class II injection wells split into 3 depth groups of equivalent size (~25,000 points with depth information ou of ~30,000 active injection wells).

Figure 20: Locations of Class II injection wells in Texas with corresponding completion depths. Counties with water-supply needs are shown in blue. (TWDB 2006)

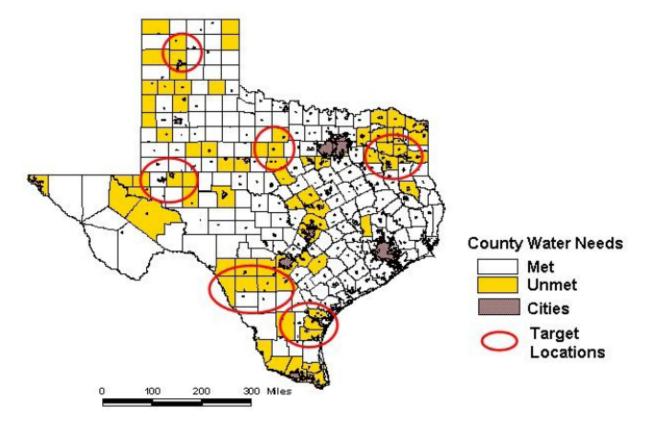


Figure 21: Texas counties with water-supply needs in 2050 (TWDB 2006)

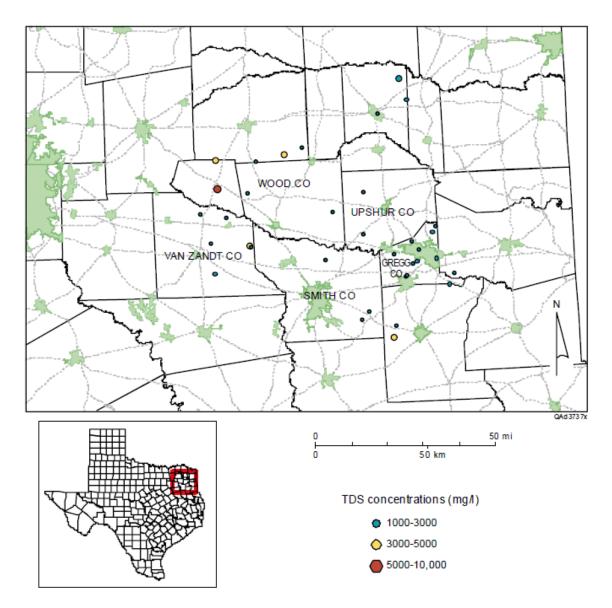


Figure 22: Location of brackish water samples with TDS concentrations (TWDB 2006)

Basin	Score relative to scaling	Score relative to water sensitivity	Score relative to injection rate	Score relative to pressure depletion
Anadarko				
	Medium	High	Low	Very High
Permian				
	Medium	High	Low	High
East Texas				
	Medium	Low	High	High
Fort Worth				
	Medium	Medium	Low	High
Maverick				
	Medium	Medium	Low	High
Southern Gu	lf Coast			
	Medium	Low-Medium	High	High

Please Pass the Salt Summary of Conclusions

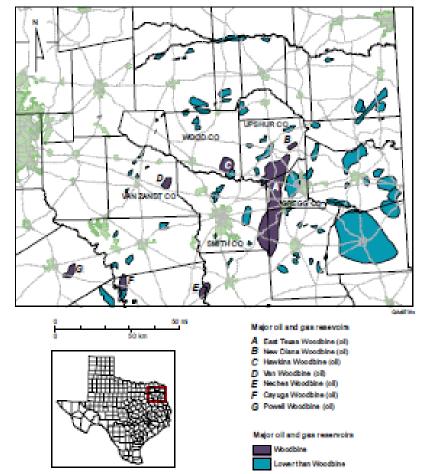


Figure 23: Please Pass the Salt Summary of Conclusions and Major Oil and Gas Reserves in the East Texas Analysis Area (TWDB 2006)

Table 4: Water User Groups with "Actual" or "Physical" Shortages with Existing Recommended Groundwater Strategies -Proximity to Oil/Gas Reserves and to Known Brackish Groundwater (BGW);

Relative Estimated Likelihood to Use Deep-Well Injection Concentrate Disposal Based on Proximity to Oil/Gas Reserves (analysis from information obtained from Guyton 2003 and TWDB 2006)

	Popu	lation	Short	age	Groun	dwater	Proximity to	Proximity to	Relative
Water User Group	Ser	ved	(ac-fl	/vr)	Strategy	(ac-ft/yr)	known Oil & Gas	known BGW	Estimated
	2030	2060	2030	2060	2030	2060	Reserves.	Wells/Samples.	Likelihood
							approx. miles	approx. miles	of Use*
Camp County	1								
Woodland Harbor	588	588	65	65	65	65	10	20	Moderate
Cass County									
Linden	2.482	2,575	101	104	215	215	5	+20	High
	2, 102	2,010	101	101	210	210	- V	120	- iigii
Gregg County		4.000		017	100	0.40			
Clarksville City	1,148	1,682	148	217	162	242	<1	<5	High
Liberty City WSC	5,647	8,485	287	678	376	752	<1	<5	High
West Gregg SUD	4,233	6,382	56	333	70	350	<1	<5	High
Starrville-Friendship WSC	1,574	2,386	0	101	0	108	<1	<5	High
Harrison County									
Waskom	3,485	4,240	54	151	88	176	2	+20	High
Blocker-Crossroads WSC	1,010	1,225	100	128	129	129	7	+20	Moderate
Caddo Lake WSC	1,249	1,515	19	52	43	86	5	+20	High
Leigh WSC	2,161	3,139	0	36	0	43	1	+20	High
Scottsville	871	1,057	0	7	0	65	2	+20	High
Talley WSC	1,664	2,020	97	142	118	177	1	+20	High
Hopkins County									
Miller Grove WSC	1,218	1,071	24	6	35	35	20	<1	Low
	1,210	1,011	21	Ű	~~~	00	20	<u></u>	2011
Hunt County	4 000	5.0.17	101		400	400			
Campbell WSC	1,303	5,917	101	773	108	108	+20	5	Low
Hickory Creek SUD	3,664	12,508	271	1,667	2,702	1,882	+40	5 10	Low
West Leonard WSC	72	245	5	28	81	81	+40	10	Low
Smith County									
Crystal Systems, Inc.	4,357	6,649	0	425	0	538	8	15	Moderate
Lindale Rural WSC	3,086	4,709	0	189	0	215	<1	10	High
Lindale	4,201	7,010	0	374	0	376	5	8	High
Star Mountain WSC	1,516	2,313	0	83	0	108	10	12	Moderate
Upshur County									
Pritchett WSC	6,478	6,998	0	51	0	54	2	5	High
Van Zandt County									
Bethel Ash WSC	617	797	0	17	0	81	6	10	Moderate
Canton	4,012	4,613	217	349	291	387	2	2	High
Grand Saline	3,863	4,560	143	255	323	323	5	2	High
RPMWSC	2,021	2,610	30	99	37	102	8	15	Low
Corinth WSC	1.170	1.511	0	23	0	27	2	6	High
Crooked Creek WSC	932	1,204	21	56	59	59	5	6	High
Edom WSC	1,372	1,771	34	86	43	86	4	15	High
Fruitvale WSC	4.010	5,179	119	269	129	301	5	3	High
Little Hope-Moore WSC	2,211	2,855	78	161	113	188	7	3	Moderate
Wood County		,	-	-	-			-	
Mineola	6,814	6,858	374	360	403	403	15	15	Low
Yantis	633	637	20	18	38	38	6	3	Moderate
							-	•	WUUEIALE
* Ratings for Relative Estimated							UNGAS Reserves is based	on the following:	
High: 0 - 5 miles; Moderate:	5 - IU miles; a	anu low: >10	miles, from	Known oll a	anu gas rese	ives.		1	

4.0 COMPARISONS OF BRACKISH WATER COSTS

This section will discuss typical capital and annual operations and maintenance costs of treating brackish groundwater. Comparisons to other alternatives will be discussed within the case studies and current national average water rates will be presented. Most desalination costs presented herein are specific to the reverse osmosis (RO) process of treatment as the vast majority of brackish groundwater is treated in this manner. Primary cost constituents will be evident in the cost comparisons.

4.1 TWDB Commissioned Reports

First to be considered in this section is the cost analysis of groundwater desalination methodology of LBG-Guyton Associates report Brackish Groundwater Manual for Texas Regional Water Planning Groups, February 2003, to the TWDB. The methodology in the Guyton report is largely supported by Desalination for Texas Water Supply, by HDR and others, August 2000, also a TWDB commissioned report. Findings of NRS Consulting Engineers work in the Rio Grande Valley supplements the Guyton report.

A costs overview and general estimated range of costs based on the Guidance Manual for Reverse Osmosis Desalination Facility Permitting Requirements in Texas, by R.W. Beck, Inc., from November 2004 will be included. Additionally, information from Guidance Manual for Brackish Groundwater Desalination in Texas, an NRS authored report to TWDB from April 2008. This report presents cost data from the North Cameron Regional Water Supply Corporation RO project 2007 completed project. Reference was also made to Desalination Handbook for Planners, 3rd edition, U.S. Department of the Interior Bureau of Reclamation, July 2003.

Case studies from the City of Clarksville City, City of Tatum and the Southmost Regional Water Authority will be examined. Information for these entities was obtained by personal communications and published reports.

4.2 Cost Analysis for Treatment of Brackish Groundwater – Methodologies from Guyton 2003 and HDR 2000 Reports

HDR 2000 presents detailed information about capital and construction and operation and maintenance (O&M) costs for brackish groundwater desalination facilities. The report gives costs estimates for essential elements of a desalination system. Referenced figures from HDR 2000 and Guyton 2003 are included herein. Additional information may be gained by reviewing the reports in their entirety, especially HDR Section 6 -Costs of Water Desalination Using Membranes and Guyton Section 4.0 Cost Analysis of Groundwater Desalination.

HDR survey responses to reasons for constructing membrane facilities included the following as reasons that desalination was used (specific response numbers are shown in parentheses): TDS (11); TDS and hardness (3); arsenic (1); and, sulfate and radionuclides (1).

Survey responses to concentrate disposal methods included the following: ocean outfall (5); surface water discharge (3); groundwater injection (1); discharge to sanitary sewer (3); and, percolation plus evaporation (4).

Capital and O&M costs are aggregated into one cost curve representing total treated water unit cost for membrane desalination. This is shown in Figure 24 on the following page. The total capital cost was divided by the present plant capacity to yield the unit cost for plant construction in dollars per gallon per day (\$/gpd). Annual debt service was computed using 8 percent over a 20-year period.

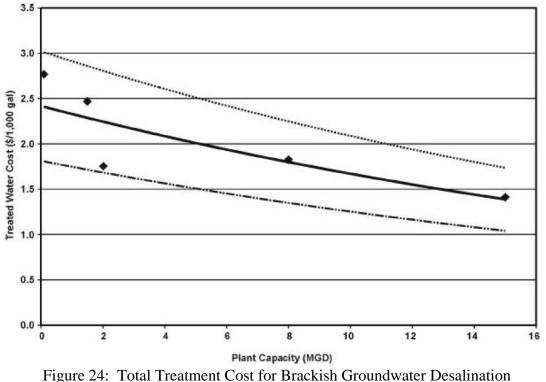
The Guyton 2003 report provided simple formulas for the calculation of the data found in the HDR report. The formula for total treatment cost (TTC) based on plant capacity, for year 2000 US dollars, is shown in Equation 1 below, by Guyton 2003, based on HDR 2000 (Figure 1 in this report):

Equation 1: TTC = -0.071C + 2.43where: TTC = total treatment cost in \$/KgalC = plant capacity in MGD

Their total treated water cost are the sum of the amortize capital costs and the O&M costs. Capital was amortized over 20 years at 8% interest. The above relationship was developed without consideration of TDS concentration in the brackish groundwater and was based on 2000 dollars.

In 2000, two relevant costs indices were:

Engineering News Record Construction Cost Index:	6221
Engineering News Record Building Cost Index:	3539


The same indices for November 2008 are estimated to be:

Engineering News Record Construction Cost Index:	8602
Engineering News Record Building Cost Index:	4847

The average factor of these two national indices is 1.38. Therefore, a factor of 1.38 has been applied to the surveyed costs compiled in the HDR report. The HDR survey consisted of 11 desalination plants, ten of which use the RO process and one using the electrodialysis reversal (EDR) process. It gives an approximate range of total treated water costs of \$1.50/Kgal to \$2.75/Kgal (2000 U.S. dollars). In 2008 US dollars this equates to \$2.07/Kgal to \$3.80/Kgal.

Using Equation 1 methodology for a system with 1 MGD capacity yields a TTC of \$2.36/Kgal. Multiplying \$2.36 by 1.38 to adjust for 2008 dollars equates to \$3.26/Kgal. One MGD equates 365 MG/year, or 365,000 1000 gallon units. Therefore, TTC for one

year equals \$3.26/Kgal multiplied by 365,000 Kgal equaling \$1,189,900 in annual costs. Using Figure 1 below one would extrapolate approximately the \$2.36/Kgal figure above and then convert it to 2008 dollars.

(HDR 2000)

A more complete picture of cost may be gained by referring to the original reports for complete discussions of the assumptions incorporated into the above and forthcoming analyses. Additionally, TDS levels, operating pressures, site specific conditions, technological advances, disposal options, regulations and fluctuating energy and construction costs will greatly influence the approximate estimation tools presented in this section.

A table presented in HDR 2000 is shown below (Table 5) varies slightly from the above discussion in that its range of total treatment costs is \$0.71/Kgal to \$2.37/Kgal, which equate to \$0.98/Kgal to \$3.27/Kgal in November 2008 dollars.

Therefore, combining the HDR 2000 and Guyton 2003 methodologies the NETRWPG should expect that the range of total treatment cost would be \$0.98/Kgal to 3.80/Kgal in November 2008 dollars. Considering increasing construction costs and this current economic period, costs should be in the upper reaches of this range. As will be discussed later, the City of Clarksville City is experiencing costs above this range for an entirely new facility.

Brackish Water Treatment Costs for Water Needing Minimal Pre-Treatment

ltern	Estimated Costs 0.1 MGD	Estimated Costs 0.5 MGD	Estimated Costs 1 MGD	Estimated Costs 3 MGD	Estimated Costs 5 MGD	Estimated Costs 10 MGD
Water Treatment Plant	\$478,000	\$1,077,000	\$1,823,000	\$3,946,000	\$5,718,000	\$9,097,000
Engineering, Legal Costs and Contingencies (35%)	167,000	377,000	638,000	1,381,000	2,001,000	3,184,000
Interest During Construction (1 years)	29,000	65,000	109,000	237,000	343,000	546,000
Total Project Cost	\$674,000	\$1,519,000	\$2,570,000	\$5,564,000	\$8,062,000	\$12,827,000
Annual Costs						
Debt Service (6 percent for 30 years)	\$49,000	\$110,000	\$187,000	\$404,000	\$586,000	\$932,000
O&M - Water Treatment Plant	37,544	<u>112,103</u>	209,522	<u>_541,840</u>	864,519	1,647,977
Total Annual Cost	\$86,544	\$222,103	\$396,522	\$945,840	\$1,450,519	\$2,579,977
Available Project Yield (acft/yr)	112	560	1,120	3,360	5,601	11,202
Annual Cost of Water (\$ per acft)	\$773	\$397	\$354	\$281	\$259	\$230
Annual Cost of Water (\$ per 1,000 gallons)	\$2.37	\$1.22	\$1.09	\$0.86	\$0.79	\$0.71

Notes:

TDS range from 1,000 mg/L to 3,000 mg/L, Feedwater pressure 300 psi, Recovery Rate 80%, Power cost \$0.06 per kWh.

Costs Not Included: Source Water Development, Concentrate Disposal, Finished Water Storage and Pumping, Distribution, Environmental/Archaeology, Land Acquisition, and Surveying

4.2.1 Capital Costs

Figure 25 is presented in the HDR and Guyton reports. It illustrates the estimated capital costs associated with brackish groundwater desalination in year 2000 dollars. A comparative range of values in 2008 dollars is approximately \$2.76/gpd to \$5.52/gpd. Again, it should be noted that the Figure 25 represents 11 desalination facility respondents.

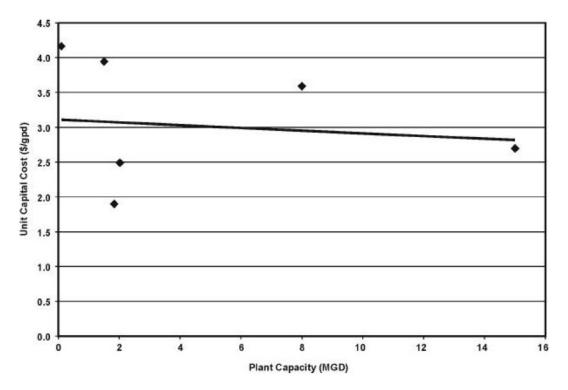
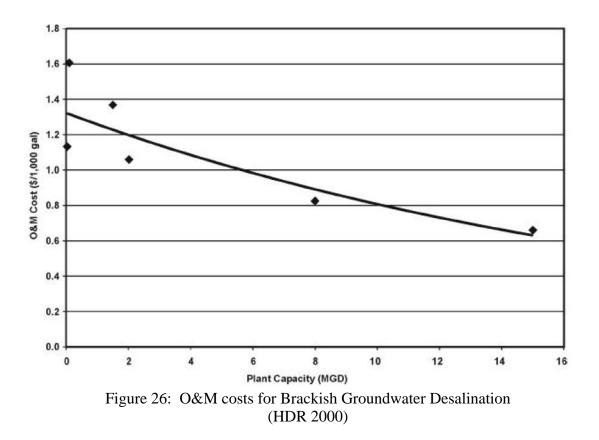



Figure 25: Capital Costs Associated with Brackish Groundwater Desalination (HDR 2000)

4.2.2 Operation and Maintenance Costs

Figure 26 (HDR 2000) illustrates the estimated O&M costs associated with brackish groundwater desalination in 2000 dollars. In 2008 dollars this represents a range of \$0.83/Kgal to \$2.21/Kgal. The estimate of operation and maintenance costs includes the cost of personnel, chemicals, power, membrane parts replacement, and concentrate disposal. Again, TDS concentration will be a primary determinate of O&M costs.

4.2.3 Energy Costs

Guyton 2003 and other reports indicate that one of the most significant cost factors for brackish groundwater desalination is the cost of energy to force brackish groundwater through the membranes. The higher the TDS level the higher the energy costs. Figure 27 shows circa 2003 data compiled by NRS Consulting Engineers indicating the effect of variable power costs on the total energy costs required to treat 3,000 mg/L TDS source water. Recent advances in energy recovery of these systems can lower the power costs of the facility. In addition, energy deregulation allows for shopping of power for lower costs (Guyton 2003).

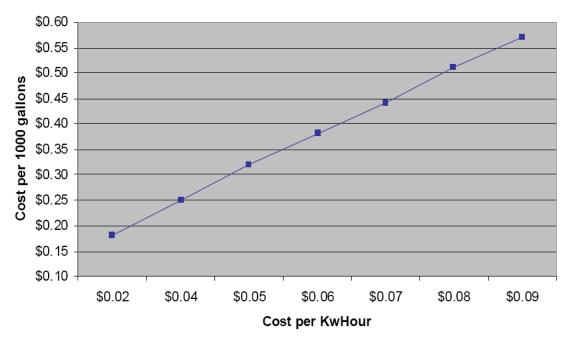


Figure 27: Recent Data (circa 2003) indicating the Effect of Power Costs for Treating 3,000 mg/L Brackish Groundwater (Guyton 2003; Data Compiled by NRS Consulting Engineers)

4.2.4 Cost of Wells for Source Water

In their February 2003 study, LBG-Guyton Associates created a table to roughly estimate the costs associated with additional wells or well field development (Table 6). Pursuant to the Guyton 2003 report, these cost relationships are "rule-of-thumb" in nature and they represent construction methods required for public water supply wells. As Guyton states, "The cost relationships do not include engineering, contingency, financial and legal services, land costs, or permits. A more detailed cost analysis should be completed prior to developing a project."

Additionally, Guyton reported, "The generic cost relationships are developed for wells of different well casing diameter. A cost relationship was developed for wells ranging from 6 to 16 inches in diameter and each relationship includes the variables for discharge and well depth. The pump costs assume that the pump is set at 300 feet below ground surface and that the lift is 300 feet. Pump depth and lift requirements will vary in each situation and may need to be adjusted for individual projects."

Well Diameter (inches)	Typical Production Range (gpm)	Estimated Cost (2002 \$) a=production rate (gpm), b= well depth (feet)
6	25-150	7000 + 68a + 60b
8	150-300	10000 + 65a + 140b
10	300-500	15000 + 63a + 180b
12	500-800	20000 + 60a + 225b
16	800-2000	22000 + 60a + 320b

 Table 6: Estimated Well Costs for Brackish Water Production Wells (Guyton 2003)

Using the cost relationships in Table 6, a 700 gpm well with a total depth of 1,000 feet would cost approximately \$287,000 in 2002 dollars. The Engineering News Record Construction Cost 2002 index was 6538, divided into 8602 (2008 index) gives the factor of 1.32. Multiply \$287,000 by 1.32 to obtain a 2008 dollars estimate of \$378,840.

The costs associated with conveyance systems for multi-well systems can vary widely based on the distance between wells, terrain characteristics, well production, and distance to the treatment or brine disposal facility. These costs should be estimated using standard engineering approaches and site-specific information.

4.2.5 Concentrate Disposal

Concentrate, brine or waste product is a primarily concern and cost factor for groundwater desalination. Concentrate disposal options include the following:

- Direct surface water discharge
- Pre-discharge mixing
- Disposal to wastewater treatment
- Deep-well injection
- Land application
- Evaporation ponds

and innovative and emerging technologies such as,

- Zero Liquid Discharge (ZLD)
- Vibratory Separation Enhanced Process (VSEP)
- Treatment wetlands
- Other hybrid approaches

The estimated costs of some brine disposal options are highlighted below.

The following sections 4.2.6, 4.2.7, and 4.2.8 on brine disposal and concentrate management are excerpted from Guyton 2003, for completeness.

4.2.6 Cost Estimates for Brine Disposal Methods

USBOR 2001 documented membrane concentrate disposal practices and the regulations that impact disposal systems and techniques. This report was based on the findings from a detailed survey of 149 membrane plants that included 84% of the utility desalting plants (RO, EDR, and nanofiltration) built in the United States between 1993 and 1999. The survey also included 44% of the utility low-pressure membrane (microfiltration and ultrafiltration) plants built during the same period. The report describes cost considerations for concentrate disposal to deep well injection, evaporation ponds, spray irrigation, and zero liquid discharge. Findings of the report regarding disposal via deepwell injection and evaporation ponds are included here as a reference for planners who need to complete preliminary cost analysis. For more details on cost estimation of spray irrigation and zero liquid discharge, please see USBOR 2001.

4.2.7 Deep Well Injection Cost Estimates

The costs of disposal by deep-well injection are subject to many site-specific circumstances – perhaps more so than those of any other disposal method (USBOR 2001).

Potential costs variables include those associated with site terrain, availability of water for drilling and injection testing, subcontractors, geology, drilling difficulty, regulatory issues, and others. USBOR 2001 describes a regression cost model to determine the total capital cost for injection wells based on 35 case studies. It should be noted that most of these wells are located in Florida, and the reader should be aware of any differences which may affect these estimates by referring to the original USBOR 2001 report. The simple formulation for estimating total capital cost for deep-well disposal is shown in Equation 2 below:

CC = -288 + 145.9(TD) + 0.754(D) (Equation 2)where: CC = total capital cost (x \$1,000)TD = tubing diameter (inches)D = depth (feet)

Please note, 2001 Engineering News Record Construction Cost Index for 2001 was 6334. Adjusting to 2008 requires multiplying by 1.36 (2008 index of 8602 divided by 6334 equals 1.36).

Figure 5 shows the relationship between total capital cost for deep-well disposal, well depth, and tubing diameter. For most cost models, the size of the disposal option is based on flow rate of concentrate. For deep-well disposal this is not always the case. Because the material costs are not the major cost factor for the deep injection wells, there is

relatively little penalty or additional cost for designing and building a well capable of receiving larger flows. This might be done to allow for future plant expansion or for future shared use of the well. If the tubing and packer requirements were not necessary for disposal of membrane concentrate, the tubing could be removed, resulting in a much larger capacity deep injection well – limited by the diameter of the final casing string (USBOR 2001).

It should be noted that the cost model and regression cost equation are provided only to obtain a preliminary level cost estimate. Site-specific conditions might significantly change estimates for the injection well disposal costs. The availability of suitable subsurface injection zones is a critical issue to be evaluated if deep well disposal is anticipated for a desalination plant.

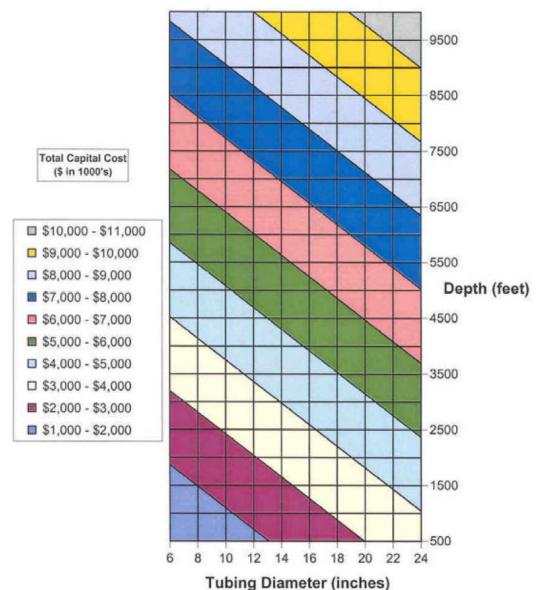


Figure 28: Total Concentrate Disposal Cost as a Function of Tubing Diameter and Well Depth (USBOR 2001)

4.2.8 Evaporation Pond Cost Estimates

Evaporation ponds are a well established method for removing water from a concentrate solution, especially in arid climates. Evaporation ponds for membrane concentrate disposal are most appropriate for smaller volume flows and for regions with relatively high evaporation rates, level topography, and low land costs.

Advantages of evaporation ponds include (USBOR 2001):

- Relatively easy to design and construct.
- Properly constructed evaporation ponds are low maintenance and require little operator attention compared to mechanical equipment and approaches.
- Very little mechanical equipment is required except for pumps to convey concentrate to the evaporation ponds.
- For small volumes of concentrate, evaporation ponds are often the least expensive means of disposal.

Disadvantages may include:

- Requirement for large tracts of land to facilitate evaporation ponds.
- Requirement for clay or synthetic liners, which may increase the construction costs. Leaking ponds can cause groundwater contamination.
- There is little economy of scale due to the nature of the evaporation process, and thus, large flows, expensive land, or uneven terrain can increase the total concentrate disposal costs.

The criteria for high evaporation rates are better met in the western half of Texas than in the eastern portion of the state. Design and cost considerations for evaporation ponds include determination of the evaporation rate, pond depth, land clearing, dike construction, liner materials and construction, miscellaneous costs (fencing, roads, seepage monitoring, etc.), operations, pond maintenance, and potential sludge removal. Of course, the first variable to be determined for proper sizing of evaporation ponds is the evaporation rate at the proposed facility location. The TWDB maintains an historical database of evaporation estimates for the entire state of Texas since 1940. Design and cost calculations should consider these data when making estimates of the pond area that will be required to use evaporation as the concentrate disposal method. After the appropriate pond area has been determined, the following formulas can be used to estimate capital cost for constructing an evaporation pond disposal system. If there are significant seasonal changes in evaporation rates, this variation would need to be incorporated into the design.

USBOR 2001 developed a simple formulation for estimating the total area (TA) required for the operation (with 20% contingency incorporated) can be estimated by:

TA = 1.2(EA)[1 + 0.155(DH)/sqrt(EA)] (Equation 3) where: TA = total area (acres)

EA = evaporation area (acres)

DH = dike height (feet)

The total unit area capital cost for evaporation pond disposal is shown in Equation 4:

 $\label{eq:UC} \begin{array}{l} UC = 5406 + 465(LT) + 1.07(LC) + 0.93(CC) + 217.5(DH) \mbox{ (Equation 4)} \\ \mbox{where:} \\ UC = total unit area capital cost ($/acre) \\ LT = liner thickness (millimeters) \\ LC = land cost ($/acre) \\ CC = land clearing cost ($/acre) \\ DH = dike height \end{array}$

The total capital cost is determined by multiplying TA by UC.

Please note, 2001 Engineering News Record Construction Cost Index for 2001 was 6334. Adjusting to 2008 requires multiplying by 1.36 (2008 index of 8602 divided by 6334 equals 1.36).

4.3 R. W. Beck, Inc. 2004 Report – Chapter 5 Estimated Range of Costs

In 2003, TWDB commissioned a R. W. Beck, Inc. to provide a guidance manual for permitting desalination facilities. The report was presented to TWDB in November of 2004 and is referred to as Beck 2004. Included within that manual is guidance for estimating concept-level cost ranges for various facility configurations. A succinct table is included in the report which highlights cost ranges for brackish water facilities in particular (Table 7).

Beck 2004 manual states that costs were estimated on an installed basis using WTCost, a cost-estimating program developed by I. Moch & Associates, et al. Other references included previous reports prepared for TWDB (LBG-Guyton Associates, et al. and HDR, et al.). The range of costs for each raw water sourcing facility, and each treatment and brine disposal option, is minus ten percent and plus 25 percent.

Beck 2004 also qualifies their work by assuming generic site conditions are encountered and that a conventional design-bid-build procurement process will be employed. The report emphasizes that Site-specific conditions vary greatly and should be taken individually into account when developing the costs for a specific project.

February 2004 was used as the base date for costs, and Engineering News Record indices (Construction Cost, Building Cost, Skilled Labor, Materials, Steel Cost, Cement Cost and Labor Rate) were used to standardize the costs to the base date when possible (*the approximate factor to be applied in order to achieve approximate 2008 dollar values is 1.21*). The exceptions to this procedure were the adjustments of the costs for brackish water wells and evaporation basins. In these two cases, a typical inflation rate of 2.5 percent per year was applied to the costs calculated as described.

Please note, Table 7 for brackish water facility concentrate disposal/re-use mechanisms shows that, when they can be employed, the options for co-disposal with wastewater, direct discharge to surface water and re-use via brine injection are much more cost-effective than evaporation basins or deep well injection.

	Facility		Intake Config	guration		Concentrate Disposal or Beneficial Re- use Mechanism		
Capacity (mgd)			Description Cost Range (\$1,000)		Description	Cost Range (\$1,000)		
	Low	High		Low	High		Low	High
3	4,091	5,625	Groundwater Wells	1,773	2,438	Co-disposal with wastewater	17	24
	6,364	8,750	Direct Intake from Surface Water Body	48	66	Deep Well Injection ⁽²⁾	3,293	4,527
						Direct Discharge to Surface Water ⁽³⁾	17	24
						Discharge to Surface Water after Blending with Power Plant Discharge	17	24
						Brine Lines ⁽⁴⁾	17	24
						Evaporation Basins ⁽⁵⁾	2,545	3,500
5	5,545	7,625	Groundwater Wells	2,491	3,425	Co-disposal with wastewater	24	33
	7,273	10,000	Direct Intake from Surface Water Body	62	85	Deep Well Injection ⁽²⁾	3,293	4,527
						Direct Discharge to Surface Water ⁽³⁾	24	33
						Discharge to Surface Water after Blending with Power Plant Discharge	24	33
						Brine Lines ⁽⁴⁾	24	33
						Evaporation Basins ⁽⁵⁾	5,091	7,000
10	9,000	12,375	Groundwater Wells	4,773	6,563	Co-disposal with wastewater	27	38
	11,364	15,625	Direct Intake from Surface Water Body	77	115	Deep Well Injection	3,823	5,257
						Direct Discharge to Surface Water ⁽³⁾	27	38
						Discharge to Surface Water after Blending with Power Plant Discharge	27	38
						Brine Lines (4)	27	38
						Evaporation Basins ⁽⁵⁾		

Table 7: (Beck 2004) Brackish Water Desalination Facility Feature Cost Ranges (TDS 3,000 ppm)

 Image: Configuration with the exception of land for evaporation basins).
 Image: Configuration with the exception of land for evaporation basins).

 (2) Assumes a minimum well tubing diameter of six inches.
 (3) Configurations using direct discharge to surface water are unlikely to meet regulatory requirements unless brackish water or seawater surface water bodies are available as recently a surface water bodies arecently as recently

(3) Comparations using uncertaisting to surface which are unified to inter regulatory requirements unless of ackiss which of seawhich surface which objects are available as receptors.
 (4) Disposal via brine lines is prohibited by regulations. Brine lines are only feasible in circumstances where concentrate has a beneficial re-use.
 (5) Evaporation basins are only feasible for small brackish water facilities, due to the amount of land required. Consequently, the cost of evaporation basins for 10 mgd brackish water facilities is not shown.

4.4 Current U.S. Water Costs and El Paso's Desalination Facility

"The annual survey conducted by the NUS Consulting Group found that the average price for water in the United States soared by 7.3 percent for the period ending July 1, 2008." (Reuters, September 24, 2008). As a reference, key outcomes of the 51 water system survey are as follows:

- The average cost of water of the surveyed communities was \$2.81/Kgal
- Highest price paid in survey was in Boston, MA at \$5.76/Kgal
- Lowest price paid in survey was in Savannah, GA at \$1.09/Kgal

The article goes on to report that since 2003 average surveyed water prices in the U.S. have increased by nearly 30%. Additional, more than two-thirds of the surveyed cities had increased their water charges over the past year.

It can be noted that El Paso, Texas is currently ranked fourth most economical in the above referenced survey when combining water and sanitary sewer rates with a combined total cost of \$3.56/Kgal. El Paso-Fort Bliss is home to the Kay Bailey Hutchison Desalination Plant, currently the largest inland desalination plant in the world, producing approximately 27.5 million gallons of fresh water daily through desalination (<u>http://www.epwu.org/water/desal_info.html</u>). The desalination facilities increase El Paso Water Utilities' fresh water production by approximately 25 percent. Deep-well injection was chosen in El Paso over conventional evaporation ponds as the preferred method of handling the concentrate disposal.

4.5 Case Study A: City of Clarksville City

In 2005 the City of Clarksville City received financial assistance from the Texas Water Development Board in the amount of \$1,530,000 to finance improvements to the City's water system. The City of Clarksville City is located approximately five miles west of Longview, Texas on U.S. Highway 80, with an estimated population of approximately 930 and providing service to approximately 331 residential water connections and 12 commercial water connections (approximately 243 wastewater connections).

Clarksville City investigated surface water options from Lake O the Pines and Lake Gladewater. Groundwater with acceptable TDS levels (fresh water) was located near East Mountain, approximately seven miles away. However, the cost of transmission of the water to Clarksville City was greater then the cost to treat the higher TDS water that was available much closer to the City. They opted for two well sites that were within a half-mile of their treatment facility that contained brackish water.

Clarksville City, with assistance from Dunn Engineering Co., developed groundwater wells in the area near the Gregg-Upshur County boundary and constructed a reverse osmosis (RO) water treatment plant. The planned project included two groundwater wells each with a capacity of between 50 to 100 gallons per minute (gpm), two RO units, each with an approximated treated effluent (product water) capacity of 70 gpm for a total

capacity of 140 gpm. However, Mr. Wendell Basham, Director of Utilities, reports that current output is between 160 to 165 gpm, on average. In addition, the project involved the construction of two 65,000 gallon ground storage tanks, high service pumps, and a supervisory control and data acquisition (SCADA) system. Mr. Michael Dunn, P.E., reported that the project received favorable bid prices as the project was advertised and opened shortly before the effects of Hurricanes Katrina and Rita began to elevate construction materials costs.

An additional important note, in early 2008 the City won best tasting water in Texas competition sponsored by the local chapter of the American Water Works Association and went on to compete nationally with 14 other entrants. Another important element to this system is that the RO concentrate is discharged directly to the sewer system (City of Gladewater).

Mr. Billy Silvertooth, City Manager for Clarksville City, provided the below costs (Table 8) that represent this project and production of 30 million gallons of water annually with a \$3.49/Kgal cost.

Description	Annual Costs	\$/Kgal Costs
Loan Repayment, 30 yrs.	\$104,736	\$3.49
O&M items		
Labor	\$12,045	
Electric	\$17,790	
Anti-scalant	\$6,334	
Caustic Soda	\$2,704	
Chlorine	\$1,823	
Pre-Filters	\$988	
Subtotal		\$1.40
Total Annual Cost	\$146,420	\$4.89

 Table 8: City of Clarksville City WTP Annual Costs

Ms. Leisa Richardson, City Secretary, provided City of Clarksville City water rates, effective August 1, 2008 (Table 9).

 Table 9: City of Clarksville City Current Water Rates

For Customers inside	the City	For Customers Outside the Corporate		
		Limits of the City		
Gallons	Rate, \$/1,000 gal	Gallons	Rate, \$/1,000 gal	
0	\$15.00 (minimum)	0	\$22.50 (minimum)	
1 - 5,000	\$4.00	1 – 49,999	\$5.25	
5,000 - 9,999	\$4.25	50,000 - 79,999	\$6.75	
10,000 - 14,999	\$4.30	80,000 and over	\$7.75	

15,000 - 19,999	\$4.50		
20,000 - 24,999	\$4.60		
25,000 - 49,999	\$4.75		
50,000 - 79,999	\$5.00		
80,000 and over	\$5.50		
Plus an additional charge of \$15.00 for all		Plus an additional ch	narge of \$22.50 for all
water taps with more t	han one connection	water taps with more	than one connection

In their circumstances, the City of Clarksville City found that desalting local brackish groundwater provided the most cost-effective water treatment scenario.

4.6 Case Study B: City of Tatum

The City of Tatum, Texas is located in Rusk County, approximately 20 miles southeast of Longview and in the Region I Water Planning Group. In 1999, in order to reduce the level of sodium and TDS in their water that were exceeding the Texas Commission on Environmental Quality (TCEQ) drinking water standards the City chose to retrofit its water system by adding a RO treatment facility. This project was partially funded by a grant from the Texas Department of Housing and Community Affairs to the City of Tatum.

The City of Tatum system consists of a 0.288 million gallons per day (MGD) water treatment plant consisting of three groundwater wells, two ground storage tanks, chlorination, four high service pumps and two elevated storage tanks. The existing groundwater qualities are shown below in Table 10:

PARAMETER	CONCENTRATION			
	Well l	Well 2	Well 3	Composite
Chlorides (mg/L)	140	230	240	214
Sodium (mg/L)	322	413	431	399 ¹
pН	8.7	8.65	8.7	
Silt Density Index (SDI)		0.22	0.2	0.21
Total Alkalinity (mg/L)	496	579	556	551
Total Dissolved Solids (mg/L)	911	1,206	1,126	$1,107^2$

Table 10: Water Quality Analysis of City of Tatum's Wells 1, 2, and 3

Note: 1: Exceeded TCEQ standard of 200 mg/L Sodium.

Note: 2: Exceeded TCEQ standard of 1,000 mg/L TDS.

The engineering consultants, Nish Vasavada, P.E and Walter T. Winn, Jr., P.E., recommended an RO unit at Plant #2, which would require the least modification as compared to the other sites (EDR was determined not to be as cost effective as RO treatment). A 200 gpm unit was recommended over a 100 gpm unit because the larger unit produced a better blended quality of water and would also satisfy 90% to 100% of Tatum's future water demand. Skid-mounted prefabricated RO units were specified in

the contract.

A percentage of the well water is treated and achieves a reduced TDS level of 50 mg/L TDS. A portion of this same well water (25%) is bypassed and it is blended to achieve a final TDS of approximately 250 mg/L, significantly lower than the State standard of 1,000 mg/L.

The total cost of the recommended system including engineering, grant administration and construction was \$570,000 (equivalent 2008 dollars is \$786,600). The project included a skid-mounted RO system, 600 square feet RO building, variable speed drive pumps, sodium bisulfate feed system, a 50,000 gallon ground storage reservoir, 1,000 feet on 8-inch PVC piping, valves, flow meters and instrumentation. The concentrate waste is disposed of in the City of Tatum sanitary sewer system. The project was designed and completed in 11 months.

Annual Operating Cost

Approximate operating costs from March of 2001, three months after start-up, are as follows:

DESCRIPTION	ANNUAL COST	
Maintenance	\$10,000	
Replacement of Membrane Elements	\$10,000	
(\$40,000 every four years)		
Power to Operate RO Unit	\$20,000	
Chemicals	\$7,000	
Maintenance, Supplies, Cleaning,	\$10,000	
Service	\$10,000	
Labor	No increase	
Total Annual Operating Cost	\$47,000	
Amortized Capital Cost (7% Interest,	\$52,000	
20	\$52,000	
yr. Period)		
Total Annual Cost	\$99,000	
Cost per 1000 Gallons*	\$0.94	

 Table 11: City of Tatum Annual Operating Costs

* Based on 0.288 MGD, or 105 million gallons per year, and approximately 510 connections

In summary, the City of Tatum's option to retrofit an existing facility with an RO proved to be an acceptable and cost effective solution to improving its existing water quality at an additional \$0.94 per 1,000 gallons, \$1.28 in 2008 dollars. Mr. Michael Morton, Utilities Director for the City of Tatum, reports that the system is working well and customers are satisfied with the water quality.

4.7 Case Study C: Economic Implications of Conventional Water Treatment Versus Desalination: A Dual Case Study

"Economic Implications of Conventional Water Treatment Versus Desalination: A Dual Case Study" (Rogers et al., 2008) is a report authored by Texas A&M University's Department of Agricultural Economics and AgriLife Research and Extension Center, and the Texas Water Resources Institute (Rogers, Sturdivant, Rister, Lacewell and Harris), supported by Rio Grande Basin Initiative with funds provided by the Cooperative State Research, Education, and Extension Service, U.S. Department of Agriculture. It is a very pertinent study to this report as it compares a conventional water system to a desalination system with similar geographic location and construction periods relatively close in time.

The conventional surface-water system analyzed in this report is the McAllen Northwest facility near McAllen, Texas and the desalination facility analyzed is the Southmost Desalination facility near Brownsville, Texas. The authors sought to achieve an equitable comparison by combining Capital Budgeting – Net Present Value (NPV) with the calculation of annuity equivalent measures. They used two independent spreadsheet models, CITY H₂O ECONOMICS[©] and DESAL ECONOMICS[©]. Likely production efficiencies were applied to establish typical daily usage for the two plants, which resulted in the benchmarks of 6.435 MGD (7,208 ac-ft/yr.) for McAllen Northwest and 5.1 MGD (5,713 ac-ft/yr.) for Southmost.

Both facilities are new, not additions to existing facilities. However, it was necessary for the McAllen facility to acquire water rights for Rio Grande River water. Initial construction costs for both facilities were obtained and converted to 2006 dollars (Table 12 and Table 13). Capital replacement costs are depicted in Table 14, in 2006 dollars and compounded at slightly more than 2.0% for annual inflation.

Facility Segment	Initial Construction/ Investment Costs	Continued Costs (annual)
1) Water Rights/Raw Water Intake/Reservoir	\$25,142,292	\$618,664
2) Pre-Disinfection	482,412	398,911
3) Coagulation/Flocculation	1,446,796	71,065
4) Sedimentation	875,574	35,838
5) Filtration/Backwash	2,677,879	36,221
6) Secondary/Disinfection	423,047	156,457
7) Sludge Disposal	747,699	107,193
8) Delivery to Municipal Line/Storage	4,683,612	212,345
9) Operations' Supporting Facilities	917,784	101,923
10) Overbuilds & Upgrades ^b	5,971,571	28,306
TOTAL	\$43,368,666	\$1,766,923

 Table 12. Initial Construction and Annual Continued Costs for the Ten Segments of

 the McAllen Northwest Facility 2007 (Rogers et al. 2008) a

^a Values are in 2006 dollars.

^b Represents construction beyond the necessities and captures "elbow room" for future expansion.

Table 13. Initial Construction and Annual Continued Costs for the Seven Segments of the Southmost Desalination Facility, 2007 (Sturdivant et al. 2008).^a

	Facility Segment	Initial Construction/ Investment Costs	Continued Costs (annual)
1)	Well Field	\$7,768,525	\$383,935
2)	Intake Pipeline	1,979,682	4,283
3)	Main Facility	9,554,574	994,494
4)	Concentrate Discharge	57,363	3,871
5)	Finished Water Line & Tank Storage	963,506	70,424
6)	Delivery Pipeline	1,698,501	187,408
7)	Overbuilds and Upgrades ^b	4,168,843	80,686
	TOTAL	\$26,190,993	\$1,725,101

^a Values are in 2006 dollars.

Represents construction beyond the necessities and captures "elbow room" for future expansion.

<u>Facility</u> Capital Item	Frequency of Replacement	Cost per Item	No. of Items Replaced each Occurrence		
McAllen Northwest (Conventional)					
SCADA Upgrades ^a	5 years	\$75,000	1		
Anthracite	2 years	15,000	1		
High Speed Pump	18 years	45,000	3		
Trucks	7 years	16,000	2		
Chemical Feed Pumps	5 years	3,750	4		
Turbidity Meters	6 years	2,500	6		
Southmost (Desalination)					
Well / Pumps	3 years	10,000	20		
Membranes	6 years	700,000	1		

Table 14. Capital Replacement Items, Occurrence, and Costs for the McAllen Northwest and Southmost Desalination Facilities, 2007 (Rogers et al. 2008 and Sturdivant et al. 2008).

^a SCADA is an acronym for 'Supervisory Control and Data Acquisition' "which is the hardware and software technology which collects data from sensors at remote locations and in real time sends the data to a centralized computer where facility management can control equipment/conditions at those locations" (Sturdivant et al. 2008).

The NPV for the two facilities over the 50-year life, in real 2006 dollars, totals \$79,167,566 for the McAllen Northwest facility and \$65,281,089 for Southmost Desalination facility (Table 15). The water production of this period for the two facilities equates to 143,164 ac-ft and 118,745 ac-ft, respectively (Table 15). This translates to a per unit life-cycle cost of \$771.67/ac-ft/yr (\$2.3682/Kgal/yr) for McAllen and \$769.62/ac-ft/yr (\$2.3619) for Southmost (Table 15). Table 16 presents percentage of total costs for the major cost categories. Table 17 is a breakout of specific O&M cost items.

Results	Units	McAllen Northwest Nominal 2006 Value (Conventional)	McAllen Northwest Real Value ^b (Conventional)	Southmost Nominal Value 2006 (Desalination)	Southmost Real Value ^b (Desalination)
Initial Construction/Investment Costs	2006 dollars	\$43,368,658	\$43,368,658	\$26,190,993	\$26,190,993
NPV of Total Cost Stream	2006 dollars	\$207,706,012	\$79,167,566	\$195,914,480	\$65,281,089
- annuity equivalent	\$/year	N/A	\$5,079,864	N/A	\$4,201,075
Water Production	ac-ft (lifetime)	360,406	143,164	291,349	118,745
- annuity equivalent	ac-ft/year	N/A	6,583	N/A	5,460
Water Production	1,000-gal (lifetime)	117,438,750	46,650,165	94,936,500	38,693,220
- annuity equivalent	1,000-gal/year	N/A	2,145,074	N/A	1,779,196
Cost-of-Producing Water	\$/ac-ft/year	N/A	\$771.67	N/A	\$769.62
Cost-of-Producing Water	\$/1,000-gal/year	N/A	\$2.3682	N/A	\$2.3619

Table 15: Aggregate Results for Costs of Production at the McAllen Northwest and Southmost Facilities, 2007.^a

The results of this table are considered the baseline analysis of the facilities in their current operating state, i.e., using current production efficiency level (78% for McAllen Northwest and 68% for Southmost), 2006 dollars, overbuilds and upgrades are included, and a zero net salvage value is recorded for all capital items and water rights.

b Determined using a 2.043% compound rate on costs, a 6.125% discount factor for dollars, a 4.000% discount factor for water, and a 0% risk factor (Rister et al. 2002).

Table 16: Costs of Producing Water by Cost Type for the McAllen Northwest and Southmost Facilities, 2007.

	McAllen Northwest (Conventional)						Southmost (Desalination)				
Cost Type	NPV of Cost Stream ^b	Annuity Equivalent in \$/yr ^b	Annuity Equivalent in \$/ac-ft/year ^b	Annuity Equivalent in \$/1000-gal/year*	% of Total Cost	NPV of Cost Stream	Annuity Equivalent in \$/yr ^b	Annuity Equivalent in \$/ac-ft/year ^b	Equivalent in \$/1000-gal/year ^b	% of Total Cost ^o	
Initial Construction/ Investment	\$43,368,658	\$2,782,792	\$422.72	\$1.2973	54.8%	\$26,190,993	\$1,685,486	\$308.77	\$0.9476	40.1%	
-Water Rights Purchase	20,404,541	1,309,277	198.89	0.6104	25.8%	N/A	N/A	N/A	N/A	N/A	
Continued Costs	35,093,723	2,251,823	342.07	1.0498	44.3%	35,633,597	2,293,151	420.10	1.2892	54.6%	
Capital Replacement	705,185	45,249	6.88	0.0211	0.9%	3,456,499	222,438	40.75	0.1251	5.3%	
Total	\$79,167,566	5,079,864	\$771.67	\$2.3682	100.0%	\$65,281,089	\$4,201,075	\$769.62	\$2.3619	100%	

* The results of this table are considered the baseline analysis of the facilities in their current operating state, i.e., using current production efficiency level (78% for McAllen Northwest and 68% for Southmost), 2006 dollars, overbuilds and upgrades are included, and a zero net salvage value is recorded for all capital items and water rights.

Determined using a 6.125% discount factor for dollars (Rister et al. 2002).

<u>Facility</u> O&M Cost Item	NPV of Cost Stream ^b	Annuity Equivalent in \$/yr⁵	Annuity Equivalent in \$/ac-ft/year ^b	Annuity Equivalent in \$/1,000 gal/year ^b	% of Total Cost
McAllen Northwest (Conventional)					
-Energy	\$7,239,217	\$464,511	\$64.75	\$0.1987	10.0%
-Chemicals	5,789,663	371,499	51.79	0.1589	8.0%
-Labor	7,124,847	457,173	63.73	0.1956	9.8%
-Raw Water Delivery	9,472,261	607,797	92.33	0.2833	12.0%
-All Other	3,270,998	209,887	29.26	0.0898	4.5%
Southmost (Desalination)					
-Energy	16,862,411	1,085,157	198.80	0.6101	25.8%
-Chemicals	5,090,723	327,607	60.02	0.1842	7.8%
-Labor	7,615,483	490,084	89.78	0.2755	11.7%
-All Other	4,368,142	281,106	51.50	0.1580	6.7%

Table 17. Costs of Producing Water by Continued Cost Item for the McAllen Northwest and Southmost Facilities, 2007.^a

^a The results of this table are considered the baseline analysis of the facilities in their current operating state, i.e., using current production efficiency level (78% for McAllen Northwest and 68% for Southmost), 2006 dollars; overbuilds and upgrades are included; and a zero net salvage value is recorded for all capital items and water rights.

^b Determined using a 6.125% discount factor for dollars (Rister et al. 2002).

However, Rogers and others 2008 goes on to recognize that there are shortcomings associated with some of the basic assumptions in the above calculations and comparison. These include the following:

- 1) assuring all financial calculations are determined in common time;
- 2) level annual production at 85% in accordance with the Rule of 85;
- 3) ignore overbuilds and upgrades intended to facilitate other functions and/or future expansions;
- 4) assume capital assets have a net salvage value of zero; and,
- 5) applying similar water quality standards

Incorporating the above-noted issues Rogers and others modified results net \$649.67/acft/yr (\$1.9938/Kgal) for McAllen and \$615.01/ac-ft/yr (\$1.8874/Kgal) for Southmost (Table 15). Tables 16 presents the percentage of total costs for the "modified" major cost categories and Table 17 is a breakout of specific "modified" O&M cost items.

An important footnote to the modified calculation is that Section 49.507 of Senate Bill 3 passed by the Texas Legislature in 2007 states that municipalities are now only required to pay 68% of the market value for water rights converted from agriculture to municipal use after January 2008 (Texas Legislature Online 2007). If the cost of water rights were reduced to 68% of the original price (\$2,300/ac-ft) the new price would be \$1,564/ac-ft, resulting in a new modified operating state of \$591.27/ac-ft/yr (\$1.8145/Kgal).

	8				/
Results	Units	McAllen Northwest Nominal 2006 Value (Conventional)	McAllen Northwest Real Value ^b (Conventional)	Southmost Nominal 2006 Value (Desalination)	Southmost Real Value ^b (Desalination)
Initial Construction/ Investment Costs	2006 dollars	\$37,397,088	\$37,397,088	\$22,022,150	\$22,022,150
NPV of Total Cost Stream	2006 dollars	\$199,159,431	\$72,633,777	\$209,423,179	\$65,208,30
- annuity equivalent	\$/year	N/A	\$4,660,618	N/A	\$4,196,39
Water Production	ac-ft (lifetime)	392,750	156,012	364,187	148,43
- annuity equivalent	ac-ft/year	N/A	7,174	N/A	6,82
Water Production	1,000-gal (lifetime)	127,978,125	50,836,718	118,670,625	48,366,52
- annuity equivalent	1,000-gal/year	N/A	2,337,580		2,223,99
Cost-of-Producing Water	\$/ac-ft/year	N/A	\$649.67	N/A	\$615.0
Cost-of-Producing Water	\$/1,000-gal/year	N/A	\$1.9938	N/A	\$1.887

Table 18. "Modified" Aggregate Results for Costs of Production at the McAllen Northwest and Southmost Facilities, 2007. ^a

The results of this table are considered the adjusted analysis of the McAllen Northwest and Southmost facilities in their modified operating state, i.e., 85% efficiency production, 2006 dollars, overbuilds and upgrades are not included, and a zero net salvage value is recorded for all capital items and water rights.

^b Determined using a 2.043% compound rate on costs, a 6.125% discount factor for dollars, a 4.000% discount factor for water, and a 0% risk factor (Rister et al. 2002).

Table 19. "Modified" Costs of Producing	Water by Cost Type for the McAllen No	orthwest and Southmost Facilities, 2007. ^a

		McAllen Northwest (Conventional)					Southmost (Desalination)			
Cost Type	NPV of Cost Stream ^b	Annuity Equivalent in \$/yr b	alent in Equivalent in \$/1000-gal/y		% of Total Cost	NPV of Cost Stream ^b	Annuity Equivalent in \$/yr ^b	Annuity Equivalent in \$/ac-ft/year ^b	Equivalent in \$/1000-gal/year	% of Total Cost
Initial Construction/ Investment	\$37,397,088	\$2,399,7621	\$344.50	\$1.0265	51.5%	\$22,022,150	1,417,205	\$207.70	\$0.6374	33.8%
-Water Rights Purchase	20,404,541	1,309,277	182.51	0.5601	28.1%	N/A	N/A	N/A	N/A	N/A
Continued Costs	35,093,723	2,215,748	308.87	0.9479	47.5%	39,729,651	2,556,747	374.71	1.1499	60.9%
Capital Replacement	705,185	45,249	6.30	0.0194	0.9%	3,456,499	222,438	32.60	0.1000	5.3%
Total	\$72,633,777	\$4,660,618	\$649.67	\$1.9938	100.0%	\$65,208,300	\$4,196,391	\$615.01	\$1.8874	100%

* The results of this table are considered the adjusted analysis of the McAllen Northwest and Southmost facilities in their modified operating state i.e., 85% efficiency production, 2006 dollars, overbuilds and upgrades are not included, and a zero net salvage value is recorded for all capital items and water rights.

Determined using a 6.125% discount factor for dollars (Rister et al. 2002).

Table 20. "Modified" Costs of Producing Water by Continued Cost Item for the McAllen Northwest and Southmost Facilities, 2007.^a

O&M Cost Item	NPV of Cost Stream ^b	Annuity Equivalent in \$/yr ^b	Annuity Equivalent in \$/ac-ft/year ^b	Annuity Equivalent in \$/1,000 gal/year ^b	% of Total Cost
McAllen Northwest (Conventional)					
-Energy	\$7,239,217	\$464,511	\$64.75	\$0.1987	10.0%
-Chemicals	5,789,663	371,499	51.79	0.1589	8.0%
-Labor	7,124,847	457,173	63.73	0.1956	9.8%
-Raw Water Delivery	9,472,261	607,797	84.72	0.2600	13.0%
-All Other	3,270,998	209,887	29.26	0.0898	4.5%
Southmost (Desalination)					
-Energy	21,078,014	1,356,447	198.80	0.6101	32.3%
-Chemicals	6,363,404	409,508	60.02	0.1842	9.8%
-Labor	7,615,483	490,084	71.83	0.2204	11.7%
-All Other	2,780,863	178,959	26.23	0.0805	4.3%

^a The results of this table are considered the adjusted analysis of the McAllen Northwest and Southmost facilities in their modified operating state (i.e., 85% efficiency production, 2006 dollars, overbuilds and upgrades are not included, and a zero net salvage value is recorded for all capital items and water rights).

^b Determined using a 6.125% discount factor for dollars (Rister et al. 2002).

5.0 CONCLUSIONS

The NETRWPA has an abundant source of brackish groundwater. Published studies have shown that total treatment costs of brackish groundwater now generally range from about \$0.98/Kgal to \$3.80/Kgal. However, an actual case study in East Texas has shown the cost to be \$4.89/Kgal. Brackish groundwater is becoming more economical and technically feasible it generally is still more expensive than current methodologies because it requires additional treatment and disposal.

In some cases the use of brackish groundwater becomes the most cost-effective alternative. This was shown to be the case for the City of Clarksville City where the closest freshwater encountered was approximately seven miles away as well as in many areas where brackish groundwater is the only groundwater available, for example in many of the areas of the Gulf Coast and in some areas of West Texas. The City of Tatum had an existing condition where two of three wells were exceeding TCEQ maximum standards of TDS and sodium. Tatum retrofitted their existing water treatment facility with RO units and utilized blending for an additional cost of approximately one dollar per 1,000 gallons produced and are know producing TCEQ compliant water.

Disposal of concentrate can be a significant cost element of brackish groundwater treatment. This is especially true if there is not a sanitary sewer system in the vicinity that can accept the waste product. Scientific studies have shown that deep-well injection is a feasible and environmentally safe option. However, the permitting process remains time-consuming and therefore costly. Significant progress must be made in the permitting process of well injection in order for it to become economically feasible for small water user groups.

The prevalence of brackish groundwater does appear to diminish the likelihood that freshwater sources are readily encountered, which appears to be the case in the vicinity of the City of Clarksville City (Gregg Co.) and the City of Tatum (Rusk Co., Region I). It should also be noted that the City of Clarksville, in Red River County, and a private well on the border of Red River and Bowie counties are also encountering brackish groundwater. While City of Clarksville is not a WUG with an identified actual shortage, they remain very interested in providing a higher factor of safety in both quantity and quality for their customers by supplementing their wells with RO treatment. Based on verbal reports from the City's Director of Water and Wastewater, it is recommended that a brackish groundwater project for Clarksville be examined further.

In addition to small and medium sized water suppliers, El Paso-Fort Bliss' Kay Bailey Hutchison Desalination Plant is an excellent example of large scale use of inland groundwater desalination. At a capacity of 27.5 million gallons of fresh water daily it is currently the world's single largest producing inland desalination plant. The facility uses the reverse osmosis technology for desalination and handles waste concentrate disposal by deep-well injection.

Brackish groundwater in the aquifers described here is generally suitable for desalination and use for industrial and municipal use. The groundwater at each location would require specific assessment and treatment processes would need to be tailored for that groundwater and for the requirements of the water user group. One consideration in treating brackish groundwater is the disposal of the concentrate from the treatment. There are various approaches to disposal, such as discharge into surface water or injection, and this component of the treatment system should be assessed as part of the overall planning of the brackish groundwater development.

While currently more expensive, the above examples demonstrate that brackish groundwater should not be overlooked as a viable source for future water supplies. Brackish groundwater can supplement the North East Texas water supply and potentially safeguard remaining volumes of existing freshwater wells by augmenting their production. The State's hydrogeology is becoming more studied and familiar to government officials, planners, scientists and engineers. Conditions may warrant the use of brackish groundwater as feasible, but each case will require a site-specific hydrogeologic and engineering analyses and knowledge of current treatment technologies. The NETRWA would benefit from continued study of desalination technology, especially of the existing desalination facilities already in its region or nearby. Additional desalination facilities in the area will allow the NETRWPG region to become more familiar with the technology and process use and would be more likely to use it to supplement its growing water supply needs.

In ranking alternatives for water supply, the most cost effective option typically governs. While economy is often the primary factor, local control can be important. Capital costs and the inertia needed to implement a new project effect a decision to move to a new technology, especially when regionalization is becoming more prevalent. However, in unique circumstances, and as surface water becomes more costly and fresh groundwater diminishes, the treatment of brackish groundwater can become a very viable option.

6.0 REFERENCES

- Arroyo, Jorge and Sanjeev Kalaswad. Texas Water Development Board. 2008. Water Desalination in Texas. U.S. Water News. http://www.twdb.state.tx.us/iwt/desal/docs/DesalTexasUSWaterNews.pdf
- AWWA. June 10, 2008. Louisville wins best water taste test. http://www.awwa.org/publications/MainStreamArticle.cfm?itemnumber=36618
- BWR, Hayter Engineering, and Hayes Engineering. January 5, 2006. Regional Water Plan prepared for Region D North East Texas Regional Water Planning Group, Appendix A, Chapter 4 Appendix.
- Basham, Wendell. 2008. City of Clarksville City, Texas. (903) 845-2681. Personal communications.
- Beach, James A. 2008. LBG-Guyton Associates, 1101 S. Capital of Texas Highway, Suite B-220, Austin, TX 78746-6437, (512) 327-9640. jbeach@lbg-guyton.com. Personal communications.
- Dunn, Michael R. 2008. Dunn Engineering Company, 950 Adrian Road, Longview, TX, 75605, (903) 663-3480. <u>dunnengr950@yahoo.com</u>. 2008.
- El Paso Water Utilities. 2008. http://www.epwu.org/water/desal_info.html
- Hayes, Mark. 2008. Texas Water Development Board Data Resources Division, 1700 North Congress Avenue, Austin, TX 78711-3231, (512) 936-0828. <u>mark.hayes@twdb.state.tx.us</u>. Personal communications.
- HDR Engineering, Inc. 2000. Desalination for Texas Water Supply. http://www.twdb.state.tx.us/RWPG/rpgm_rpts/99483280_2000483328.pdf
- LBG-Guyton Associates. 2003. Brackish Groundwater Manual for Texas Regional Water Planning Groups. <u>http://www.twdb.state.tx.us/RWPG/rpgm_rpts/2001483395.pdf</u>

Merriam-Webster website. April 2009. http://www.merriam-webster.com/dictionary/osmosis

Morton, Michael. 2008. City of Tatum, Texas. (903) 947-2260. Personal communications.

- NRS Consulting Engineers. 2008. Guidance Manual for Brackish Groundwater Desalination in Texas. <u>http://www.twdb.state.tx.us/RWPG/rpgm_rpts/0604830581_BrackishDesal.pdf</u>
- NRS Consulting Engineers. Joseph W. Norris. Southmost Regional Water Authority Regional Desalination Plant.

http://www.twdb.state.tx.us/iwt/desal/docs/The%20Future%20of%20Desalination%20in%20T exas%20-%20Volume%202/documents/D7.pdf

R.W. Beck, Inc. 2004. Guidance Manual for Permitting Requirements in Texas for Desalination Facilities Using Reverse Osmosis Processes. <u>http://www.twdb.state.tx.us/RWPG/rpgm_rpts/2003483509.pdf</u>

Rapen, Daniel. 2008. City of Clarksville, Texas. (903) 427-3834. Personal communications. Reuters, September 24, 2008. Average U.S. Water Costs Increase by 7.3%. http://www.reuters.com/article/pressRelease/idUS163067+24-Sep-2008+MW20080924

- Richardson, Leisa. 2008. City of Clarksville City, Texas. (903) 845-2681. <u>citysecy@suddenlinkmail.com</u>. Personal communications.
- Rogers, C.S., A.W. Sturdivant, M.E. Rister, R.D. Lacewell, and B.L. Harris. 2008. Economic Implication of Conventional Water Treatment Versus Desalination: A Dual Case Study. <u>http://ageconsearch.umn.edu/bitstream/6729/2/sp08ro14.pdf</u>
- Silvertooth, Billy. 2008. City of Clarksville City, Texas. (903) 845-2681. <u>citymgr@suddenlinkmail.com</u>. Personal communications.
- Texas Water Development Board. 2008. Please Pass the Salt: Using Oil Fields for the Disposal of Concentrate from Desalination Plants, Report 366. Robert E. Mace, et al. <u>http://www.twdb.state.tx.us/publications/reports/GroundWaterReports/GWReports/Report366.</u> <u>pdf</u>
- Texas Water Development Board. 2005. Chapter 15 Water Desalination, Report 360. Jorge Arroyo. <u>http://www.twdb.state.tx.us/publications/reports/GroundWaterReports/GWReports/R360AEPC/Ch15.p</u> <u>df</u>
- Texas Water Development Board. 2005. Briefing on TWDB Desalination Activities for the South Central Desalting Association. Jorge Arroyo. <u>http://www.twdb.state.tx.us/iwt/desal/docs/presentations/05-Jul%2021%20SCDA.pdf</u>
- Texas Water Development Board. 2008. TWDB website. Innovative Water Technologies. http://www.twdb.state.tx.us/iwt/iwt.html
- Texas Water Development Board. April 2009. TWDB website. Water Resources Planning & Information; Regional Water Planning. <u>http://www.twdb.state.tx.us/wrpi/rwp/rwp.htm</u>
- U.S. Department of the Interior, Bureau of Reclamation (USBOR). 2001. Membrane Concentrate Disposal: Practices and Regulation. Agreement No. 98-FC-81-0054. Desalination and Water Purification Research and Development Program Report No. 69.
- U.S. Department of the Interior, Bureau of Reclamation (USBOR). 2003. Technical Service Center, Water Treatment Engineering and Research Group. Desalting Handbook for Planners. <u>http://www.usbr.gov/pmts/water/publications/reportpdfs/report072.pdf</u>

- Vasavada, Nish and Walter T. Winn, Jr. 2001. Application of Reverse Osmosis for Water Treatment at Tatum, TX – A Case Study. Proceedings, Texas Section ASCE, Spring Meeting, San Antonio, TX, March 30, 2001.
- Winn, Walter T. Jr., 2008. Winn Professional Engineers and Constructors, LLC, P.O. Box 2727, Longview, TX 75606, (903) 553-0500. <u>twin@winnpec.inc</u>. Personal communications.

7.0 APPENDIX A – WATER USER GROUPS ANALYSES TABLES

Table I – Non-Residential Users

				Curi	ent Major U	sers				Wells	
County	Number of Systems	Plan to Add Major Customers	Name	Туре	Annual Use (MG/yr.)	Source	Purchasing Capacity (MG/yr.)	Number	Capacity (GPM)	Depth (Ft.)	Aquifer
Camp County	1	No	Pilgrim Pride Corp	Manufacturing	126	NETMWD & Groundwater	149.3	7	130/80/75/100	450	Carrizo-Wilcox
			Pittsburg Hot Link Packers	Manufacturing					165/340/100	all	
Franklin County	1	No	Keller's Creamery	Industrial	37.8	Lake Cypress Springs	222.6				
			Presbyterian Hospital	Hospital	2.4						
			TDCJ	Prison	16.8						
Greg County	4	No	Snow Max	Industrial	1.3			6	110/125/80	600/600/600	Carrizo-Wilcox
									650(2)/60	1000/?	Carrizo-Wilcox
		No	Texas Eastman (Raw Water)	Manufacturing	1288.2	Lake Cherokee	3584				
			Texas Eastman (Treat. Water)	Manufacturing	248.2	Lake Fork	1174				
			Rexam	Manufacturing	68	Lake O'the Pines	0				
			Air Liquide	Manufacturing	37.2	Sabine River	1132				
			Marathon-LeToureau	Manufacturing	29.5						
			LeBus	Manufacturing	20.3						
			Compressed Gas Cyclinder	Manufacturing	13.2						
			Trinity Industries	Manufacturing	11.6						
		No	Gas solutions	Oil/Gas	19.5	City of Longview	380.65				
		No	City of Clarksville City	Wholesale	25.1	Lake Gladewater	NR				
			Warren City	Wholesale	11.5						
			Starrville-Friendship	Wholesale	0.001						
			Truman in Smith	Commercial	5.8						
			Housing Authority	Commercial	3.5						
			Texas Die Casting	Commercial	3.6						
			Gladewater Nursing Home	Commercial	2.4						
			CADDAX	Commercial	1.5						
			American health Care	Commercial	2.3						
Harrison County	1	No	Trinity Industries	Industrial	5	City of Longview	5	2	200/180	500/500	Carrizo-Wilcox
Hopkins County	1	No	Ocean Spray	Industrial	96.7	Cooper Lake	4745				
, ,			Morningstar Speciality	Industrial	74	Lake Sulphur Springs	3193				
			Kohler Mix	Industrial	36.2						
			Dairy Farmers of America	Industrial	34.6						
			Hop. Co. Memorial Hosp.	Hospital	14.2						
			Flowserve	Industrial	11						
Hunt County	2	Yes	Boles Home	Wholesale	4.7	Lake Tawakoni	574				
	<u> </u>	5000									
		Homes	Boles ISD	Wholesale	3.6	NTMWD	1792 AF/Yr				
			Combined Consumers WSC	Wholesale	1.9						
			Aqua Source	Wholesale	9.9						

Table I – Non-Residential Users (continued)

				Curre					
County	Number of Systems	Plan to Add Major Customers	Name	Туре	Annual Use (MG/yr.)	Source	Capacity (MC/yr.) Capacity (MC/yr.) <t< th=""><th>Number</th><th>Capacity</th></t<>	Number	Capacity
			City of Lone Oak	Wholesale	20				
			Lone Oak ISD	Wholesale	3.7				
			City of Quinlan	Wholesale	61.4				
			Sabine River Authority	Wholesale	0.4				
		Yes	L-3 Communications	Ind/MFG	53.9	Lake Ribitt	1.35		
		12-16 MGD	Rubbermaid Inc.	Ind/MFG	26.7	Lake Tawakoni	6.9		
			Fiberite Corp.	Ind/MFG	14.6				
			Other Manufacturing	Ind/MFG	31.8				
			Greenville Electrical	Ind/MFG	14.5				
Marion County	1	No	Blackburns Syrup	Manufacturing	2.4	NETMWD	NR		
	· ·		Nexfor Norbord	Manufacturing	10.2				
			Sonoco	Manufacturing	NR				
Morris County	3	No	(One Not Named)	Manufacturing	NR		As Needed		
Morns County	3	Yes	Reilly Ind	J. J	6.1				
		No	Mapa Manufactiring	Manufacturing Manufacturing	0.02		INI	5	90/32
		INU	Tamko Inc.	Manufacturing	3.8	Gioundwater		5	90/32
			Top Hat Inc.	Manufacturing	0.37				112/
Red River County	1	No	David Rozell	Non- Residential	0.259	Lamar County ESC	54.5		
			12 Livestock Users	Livestock	5.269				
Titus County	1	No	Pilgrim's Pride	Industrial	1080	Lake Bob Sandlin	2750		
		110	Tri-Water Corp.	Water Supply	501	Cypress Springs Lake			
			City of Winfield	Water Supply	50	Lake Tankersley	3000 AF/Yr		
Upshur County	1	No	The Pines	Recreational	3.8	Groundwater		17	55/50
Opsilul County	I	INO	Pavement Tools MFRS Inc.	Manufacturing	1.4	Oroundwater		17	58/66
			Boersma Dairy	Livestock	0.6				100/15
			Xavera Dairy	Livestock	Backup				35/50
			Green Dairy	Livestock	1.3				42/85
Van Zandt County	2	No	Deen Farms	Dairy	1.7	Lake Fork	730	2	100/
			Chitty Nursery	Plant Farm	0.5				
			Flory Tree Farm	Plant Farm	1				
			Van Zandt Livestock Auction	Livestock	0.5				
		No	Wills Point ISD	School	1.1	Lake Tawakoni	365		
			9 Commercial	Commercial	1.1				
Wood County	6	No	Central Marble	Manufacturing	0.48	Groundwater		2	1306

	Wells	
city (GPM)	Depth (Ft.)	Aquifer
)/32/75	360/360/360	Carrizo-Wilcao
12/105	400/402	Carrizo-Wilcao
	700/075/500	
5/50/70 5/66/73/	760/375/562 615/592/623	Carrizo-Wilcox Carrizo-Wilcox
/155/100	650/621/770	Carrizo-Wilcox
5/50/84	490/600/650	Carrizo-Wilcox
2/85/52	570/600/1153	Carrizo-Wilcox
/		
00/100	475/490	Carrizo-Wilcox
		· · -
306/60	400	NR

			Curre	ent Major Us	sers	·			Wells	
County	NumberPlan toofAdd MajorSystemsCustomers	Name	Туре	Annual Use (MG/yr.)	Source	Purchasing Capacity (MG/yr.)	Number	Capacity (GPM)	Depth (Ft.)	Aquifer
	No	Salesman Club	Manufacturing	3	Groundwater		6	225/225/300	1216/1134/925	Carrizo-Wilcox
		Hawkins RV	Manufacturing	1				120/200/120	464/1050/1000	Carrizo-Wilcox
		Fish Haul RV	Manufacturing	0.05						
		Hall Dairy	Livestock	0.142						
	No	Billy Mack Chamness	Dairy	0.155	Groundwater		6	140/45/200	449/470/250	Carrizo-Wilcox
		Dennis Fraxier	RV Park	0.03				86/38/100	240/?/215	Carrizo-Wilcox
		Dorthy Yarbrough	Dairy	0.08						
	No	Wood Memorial Care Center	Commercial	4.3	Groundwater		3	400/600/750	290/270/260	Carrizo-Wilcox
		Harvest Care Center	Commercial	0.411						
		Mineola Packing	Commercial	2.5						
	No	Tonya McShan	Livestock	1.35	Groundwater		3	125/240/340	600/619/600	Carrizo-Wilco
	No	Keller's Creamery	Industrial	37.8	Lake Cypress Springs	222.6				
		Presbyerian Hospital	Hospital	2.4						
		TDJC	Prison	16.8						
Total Usage				4237.417						
R -No Response										
A -Not Applicable										

Table I – Non-Residential Users (continued)

County	Number of WUG Reported	WUG with Non- Residential Users	Reported Non- Residential Users
Bowie County	10	0	0
Camp County	3	1	2
Cass County	6	0	0
Delta County	2	0	0
Franklin County	3	1	3
Greg County	12	4	19
Harrison County	16	1	1
Hopkins County	8	1	6
Hunt County	19	2	13
Lamar County	5	0	0
Marion County	4	1	3
Morris County	4	3	5
Raines County	5	0	0
Red River County	5	1	2
Smith County	5	0	0
Titus County	5	1	3
Upshur County	10	1	5
Van Zandt County	12	2	6
Wood County	14	6	15
Totals	148	25	83

Table II – User Types by County

User Types	Number of Users	Annual Usage (MG/Yr.)
Commercial	11	27.7
Institutional	6	53.7
Industrial	15	1555.9
Livestock/Dairy	10	11.1
Manufacturing	23	1871.0
Oil/Gas	1	19.5
Plant Farm	2	1.5
Recreational/R-V Park	2	3.8
Wholesale/Water Supply	13	693.2
Totals	83	4237.4

Table III – Summary of User Types

Table IV – County Trends of Users

							Connec	ctions					
		Resi	dential	Non-R	esidential	Manu	Ifacturing	Liv	vestock		wer ration	Тс	otal
System	County	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003
COUNTY TOTALS	Bowie	9,483	10,238	532	555	2	2	0	0	0	0	10,017	10,795
CHANGE			755		23		0						778
% CHANGE			7.96%		4.32%		0		0		0		7.77%
COUNTY TOTALS	Camp	1,799	1,818	321	357	0	0	0	0	0	0	2,120	2,175
CHANGE			19		36								55
% CHANGE			1.06%		11.21%		0		0		0		2.59%
COUNTY TOTALS	Cass	2,798	2,915	209	218	5	5	0	0	0	0	3,012	3,138
CHANGE		,	117		9	_	0			_	_	-) -	126
% CHANGE			4.18%		4.31%		0		0		0		4.18%
COUNTY TOTALS	Delta	1,349	1,471	20	27	0	0	0	0	0	0	1,369	1,498
CHANGE	Dolla	1,010	122	20	7		0		0	Ű		1,000	129
% CHANGE			9.04%		35.00%		0		0		0		9.42%
COUNTY TOTALS	Franklin	5,876	6,062	405	419	35	35	40	50	0	0	6,356	6,566
CHANGE	Папкіш	3,070	186	405	14		0	40	10	0	0	0,330	210
% CHANGE			3.17%		3.46%		0		25.00%		0		3.30%
COUNTY TOTALS	Greg	34,610	35,183	5,301	5,399	139	147	0	0	0	1	40,050	40,73
CHANGE	Gleg	34,010	573	3,301	98	159	0	0	0	0	1	40,030	680
% CHANGE			1.66%		1.85%		0		0		0		1.70%
COUNTY TOTALS	Harrison	14,481	14,828	1,222	1,261	3	3	0	0	0	0	15,706	18,54
CHANGE			347		39		0		0		0		2,837
% CHANGE			2.40%		3.19%		0		0		0		18.06
COUNTY TOTALS	Hopkins	9,606	10,241	882	882	23	24	52	39	0	0	10,563	11,18
CHANGE			635		0		1		-13		0		623
% CHANGE			6.61%		0		4.35%		-25.00%		0		5.90%
COUNTY TOTALS	Hunt	23,202	25,148	1,058	1,070	18	18	0	0	0	0	24,278	26,23
CHANGE			1,946		12		0		0		0		1,958
% CHANGE			8.39%		1.13%		0		0		0		8.06%
COUNTY TOTALS	Lamar	17,544	18,384	35	50	0	0	0	0	0	0	17,579	18,43
CHANGE			840		15		0		0		0		855
% CHANGE			4.79%		42.86%		0		0		0		4.86%
COUNTY TOTALS	Marion	2,408	2,583	1	2	2	3	0	0	0	0	2,411	2,58
CHANGE	manon	,100	175		1		1		0		0	-,	177
% CHANGE		+ +	7.27%		100.00%		50.00%		0		0		7.34%

							Connec	ctions					
		Resi	dential	Non-R	esidential	Manu	Ifacturing	1	/estock		wer ration	То	tal
System	County	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003
COUNTY TOTALS	Morris	2,882	2,774	307	289	4	4	0	0	0	0	3,193	3,067
CHANGE			-108		-18		0		0		0		-126
% CHANGE			-3.75%		-5.86%		0		0		0		-3.95%
COUNTY TOTALS	Raines	3,411	3,994	62	75	1	1	0	0	0	0	3,474	4,070
CHANGE	Traines	3,411	583	02	13	1	0	0	0	0	0	3,474	596
% CHANGE			17.09%		20.97%		0		0		0		17.16%
% CHANGE			17.09%		20.97%		0		0		0		17.10%
COUNTY TOTALS	Red River	4,187	5,038	260	278	5	5	11	11	0	0	4,463	5,332
CHANGE			851		18		0		0		0		869
% CHANGE			20.3%		6.92%		0		0		0		19.47%
COUNTY TOTALS	Smith	3,759	4,625	162	188	14	15	4	4	0	0	3,939	4,832
CHANGE	Onnar	0,700	866	102	26	14	10	-	0	0	0	0,000	893
% CHANGE			23.04%		16.05%		7.14%		0		0		22.67%
/8 CHANGE			23.0470		10.0370		7.1470		0		0		22.07 /0
COUNTY TOTALS	Titus	5,247	5,447	37	47	0	0	0	0	0	0	5,284	5,494
CHANGE			200		10		0		0		0		210
% CHANGE			3.81%		27.03%		0		0		0		3.97%
COUNTY TOTALS	Upshur	8,162	8,393	99	115	3	3	3	3	0	0	8,267	8,514
CHANGE	Opsilui	0,102	231		16	5	0	5	0	0	0	0,207	247
% CHANGE			2.83%		16.16%		0		0		0		2.99%
78 CHANGE			2.03 /0		10.1070		0		0		0		2.9970
COUNTY TOTALS	Van Zandt	10,424	13,434	206	219	179	190	4	4	0	0	10,813	13,847
CHANGE			3,010		13		11		0		0		3,034
% CHANGE			28.88%		6.31%		6.15%		0		0		28.06%
COUNTY TOTALS	Wood	16,875	18,141	1,019	1,078	19	19	1	1	0	0	17,914	19,239
CHANGE		10,070	1,266	1,010	59	10	0		0		0	17,017	1,325
% CHANGE			7.50%		5.79%		0		0		0		7.40%
REGION D TOTALS		178,103	190,717	12,138	12,529	452	474	115	112	0	1	190,808	206,284
CHANGE			12,614		391		22		-3		1		15,476
% CHANGE			7.08%		3.22%		4.87%	<u> </u>	-2.61%	<u> </u>	0		8.11%
NR - No Response N/A – Not Applicable													

Table IV – County Trends of Users (continued)

Table V – Water Quality

							V	ater Treatment	or Purchase	•			
		Total Con	nections						We	ells			
System	County	1999	2003	Do You Treat Your Own Water	Recycle or Reuse	Source	Number	Capacity (GPM)	Depth (Ft.)	Aquifer	Have Wells Declined in Quantity or Quality	Volume MG/Yr. (Last Full Yr.)	Costs per 10,000 Gal
Redwater Water & Sewer Co.	Bowie	850	912	Yes	No	Texarkana Water Util.	2	35 &100	250 & 250	Carrizo-Wilcox	Yes (Quantity due to Dry Weather)	85	\$ 33.00
City of Bogata	Red River	616	604	Yes	No	Groundwater	3	300/300/65	325/325/300	Nacatoch	Yes (Dry)	38.2	\$ 37.00
City of Clarksville	Red River	1,711	1,624	Yes	No	Langford Lake	2	320/350	302/675	Blossom	Yes (Bacteria, High Sodium)	207	\$ 36.00
Red River County WSC	Red River	1,844	1,994	Yes	No	Texarkana Utilities	4	170/150	550/550	Blossom	No	159	\$ 43.50
						LCWSD		150/380	500/600	Blossom/Nacatoch	Yes (TDS Up to Max Well #1)		
City of Gilmer	Upshur	2,450	2,450	No	No	Groundwater	6	230/250/560	492/519/540	Carrizo-Wilcox	Wells 3 & 4 have Decreased	305.8	NR
Rosewood	Upshur	119	121	Yes	No	Groundwater	2	60/35	415/424	Carrizo-Wilcox	Fall in Static Level	9.5	\$ 38.20
City of Canton	Van Zandt	1,785	1,860	Yes	No	Mill Creek Lake	1	280	520	Carrizo-Wilcox	Yes (Lower Pump 20 ft.since1988)	298	NR
New Hope WSC	Wood	704	735	Yes	No	Groundwater	3	125/240/340	600/619/600	Carrizo-Wilcox	Yes (40-50Ft. In 10 Yrs.)	89.9	\$ 39.50
Yantis WSC	Wood	235	230	Yes	No	Groundwater	2	22/100	420/430	Carrizo-Wilcox	Yes (GPM Down 50%)	24.7	\$ 42.00
NR - No Response N/A - Not Applicable													

County	No. of Systems	Surface Water Systems	Ground Water Systems	Planned Capacity Increase (MG/Yr.)	Year Planned	Last Full Year Volume (MG/Yr.)
Cass	1	1		660		148
Franklin	1	1		391	2009	297.7
Greg	2	1		263		172.4
Citig			1	737.3		218.5
Harrison	5	1		18		66.2
			4	103.7		166.3
	_	-				
Hunt	5	2		839.5		213.6
			3	2,300		124.4
Lamar	1	1		6,124	2010	813.5
Smith	1		1	91		319.5
Upshur	5	4		930		505.3
			1	52		51.8
Mar						
Van Zandt	2	1		182.5		202.2
			1	12		75
Wood	5		5	258		763.6
wood	5		5	200		705.0
Totals	28	12	16	12,962		4,138

Table VI – Reported Expansion in Capacity

Table VII – Water Costs Above \$50/10,000 Gallons

								Water Trea	tment or Purc	hase					
									Wells				Expansion ans		
System	County	2003 Connections	Plan to add Major Customers	Do you treat your own water	Source	Purchasing Capacity (MG/yr.)	Number	Capacity (GPM)	Depth (Ft.)	Aquifer	Have Wells Declined in Quantity or Quality	Source	Planned Capacity (MG/Yr.)	Volume MG/Yr. (Last Full Yr.)	Costs per 10,000 Gal
\$50+ Water Supply															
City of Reno	Lamar	1,127	No	No	Lamar County WSD	102.3								102.2	\$ 50.07
Tryon Road SUD	Greg	1,715	No	No	Groundwater		9	400/50/0	835/300/250	Carrizo- Wilcox	No	Lake of the Pines	737.3	218.5	\$ 51.00
City of Quitman	Wood	983	No	Yes	Lake Fork Reservoir	365								116	\$ 51.46
City of Caddo Mills	Hunt	461	No	Yes	City of Greenville	As Required						Caddo Basin	Back-up only	40.9	\$ 51.84
Central Bowie Co. WSC	Bowie	2,280	No	No	Texarkana Water Util.	172								172	\$ 52.00
Mims WSC	Marion	480	No	No	NETMWD	25								20	\$ 52.26
City of Edgewood	Van Zandt	595	No	Yes	City Lake									79.2	\$ 57.31
City of Deport	Lamar	290	No	Yes	Lamar County WSD	NR								41.7	\$ 57.50
MACBEE SUD	Van Zandt	2,043	No	Yes	Lake Fork	730	2	100/100	475/490	Carrizo- Wilcox	No			171.5	\$ 57.99
South Tawakoni WSC	Van Zandt	1,372	No	Yes	Lake Tawakoni	365						Lake Tawakoni SRA	182.5	202.2	\$ 58.79
Woodland Estates	Bowie	44	No	Yes	Groundwater		3	80/100/60	50/175/280	Wilcox	No			4	\$ 59.99
NR - No Response N/A - Not Applicable															

Table VII – Water Costs Above \$50/10,000 Gallons (continued)

								Water Trea	atment or Pur	chase					
									Wells			Capacity Pla	Expansion ans		
System	County	2003 Connections	Plan to add Major Customers	Do you treat your own water	Source	Purchasing Capacity (MG/yr.)	Number	Capacity (GPM)	Depth Ft.	Aquifer	Have Wells Declined in Quantity or Quality	Source	Planned Capacity (MG/Yr.)	Volume MG/Yr. (Last Full Yr.)	Costs per 10,000 Gal
\$60+ Water Supply															
410 WSC	Red River	815	No	No	Lamar County ESC	54.5								54.5	\$ 61.29
City of Lone Oak	Hunt	283	No	No	Cash Water Supply	54.75								19.1	\$ 61.94
Pritchett WSC	Upshur	2,329	No	No	Groundwater		17	55/50/70	760/375/562	Carrizo- Wilcox	No			181	\$ 63.32
City of Hallsville	Harrison	1,074	No	No	City of Longview	86	4	27/106	204/243	Carrizo	No			108.4	\$ 65.00
Combined Consumers WSC	Hunt	2,916	No	Yes	Lake Tawakoni-SRA	547.5						Surface Water- SRA	839.5	172.7	\$ 65.48
NR - No Response N/A - Not Applicable															

Table VIII – Summary of All Survey Items

								Con	nections															Water Treatme	nt or Purchase						
			Residential	I	Non-Res	idential	Manuf	facturing	Lives	stock	Power G	eneration	т	otal		C	urrent Major Users								Wells			Capacity Exp	ansion Plans		
System	County	y 199	9 20	003	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	Plan to Add Major Customers	Name	Туре	Annual Use (MG/yr.)	Do You Treat Your Own Water	Recycle or Reuse	Source	Purchasing Capacity (MG/yr.)	Number	Capacity (GPM)	Depth (Ft.)	Aquifer	Have Wells Declined in Quantity or Quality	Source	Planned Capacity (MG/yr.)	Volume MG/yr. (Last Full Yr.)	Costs per 10,000 Gal
Central Bowie Co.	Devia	470	7 0	400	73	84							1800	2280	Ne				No	Ne	Texarkana	172								172	\$ 52.00
WSC Cody M. H.	Bowie	20		30	73	84	0	0	0	0	0	0	20	30	No				Yes	No	Water Util.	1/2				NR	No			172 NR	\$ 52.00
Park City of	Bowie			00	0	101	0	0	0	0	0	0	880	50	No				No	No	Groundwater Texarkana	NR	2	20 & 20	44 & 44	NK	NO				NR \$ 36.66
DeKalb	Bowie			773	95	60	0	0	0	0	0	0		874	No						Water Util. Texarkana	1								73	
City of Hooks	Bowie			189	50	00	0	0	0	0	0	0	1264	1249	No				No	No	Water Util. Texarkana	151								147	NR
City of Maud City of New	Bowie			527	54	45	2	2	0	0	0	0	594	574	No				No	No	Water Util. Texarkana	348.7								52.2	\$ 23.60
Boston Oak Grove	Bowie			230	245	245	0	0	0	0	0	0	2423	2475	No				No	No	Water Util. Texarkana	355								350	\$ 35.09
WSC Redwater Water &	Bowie			271	0	0	0	0	0	0	0	0	267	271	No				No	No	Water Util. Texarkana	24					Yes (Quantity due to Dry			18	\$ 39.50
Sewer Co. City of Wake	Bowie			892	15	20	0	0	0	0	0	0	850	912	No				Yes	No	Water Util. Texarkana	54.6	2	35 &100	250 & 250	NR	Weather)			85	\$ 33.00
Village Woodland	Bowie			086	0	0	0	0	0	0	0	0	1889	2086	No		<u> </u>	1	No	No	Water Util.	As Required	_					+	+	207	\$ 27.74
Estates Cherokee	Bowie			44	0	0	0	0	0	0	0	0	30	44	No		<u> </u>	1	Yes	No	Groundwater		3	80/100/60	50/175/280	Wilcox Carrizo-	No	+	+	4	\$ 59.99
Point City of	Camp			63	0	0	0	0	0	0	0	0	47	63	No	Pilgrim Pride			Yes	No	Groundwater NETMWD &		1	125	362	Wilcox Carrizo-	No			3.8	\$ 49.18
Pittsburg	Camp	145	7 1	555	321	357	0	0	0	0	0	0	1778	1912	No	Corp Pittsburg Hot	Manufacturing	126	Yes	No	Groundwater	149.3	7	130/80/75/100	450	Wilcox	No			362	\$ 32.15
Alpha Utility																Link Packers	Manufacturing							165/340/100	all					'	
of Camp Co. City of	Camp	29	5 2	200	0	0	0	0	0	0	0	0	295	200	No				Yes	No	NR		NR	NR						4.5	\$ 30.25
Hughes Springs	Cass	110	0 1	141	20	26	3	3	0	0	0	0	1123	1170	No				No	No	Lake of the Pines	140						NETMWD	660	148	\$ 29.50
McLeod ISD	Cass	0		0	1	1	0	0	0	0	0	0	1	1	No				No	No	East Cass WSC	1				0				NR	NR
City of Queen City	Cass	78	1 8	878	0	0	0	0	0	0	0	0	781	878	No				Yes	No			1	500	972	Queen City Sands	No			53.2	\$ 32.36
Whispering Pines MHP	Cass	55		55	0	0	0	0	0	0	0	0	55	55	No				NR	No	Groundwater		2		445	Edwards	No			880.2	NR
Atlanta State Park/TPWLD	Cass	0		0	80	80	0	0	0	0	0	0	80	80	No				Yes	No	Groundwater		2	100/70	439/330	Carrizo- Wilcox	No			0.72	N/A
City of Linden	Cass	86	2 8	841	108	111	2	2	0	0	0	0	972	954	No				Yes	No	Groundwater		4	85/120	740/712	Wilcox	No			101	\$ 36.00
																								130/140	834/786	Wilcox					
Charlston WSC	Delta	39	9 4	485	0	0	0	0	0	0	0	0	399	485	No				No	No	Cooper	44.3								44.3	\$ 48.60
City of Cooper	Delta	95) 9	986	20	27	0	0	0	0	0	0	970	1013	No				Yes	No		163.1								163.1	\$ 39.30
Cypress Springs SUD	Franklir	n 366	0 3	843	0	0	0	0	40	50	0	0	3700	3893	No				Yes	NR	Lake Cypress Spgs. & Well	1140	1	125	500	Carrizo- Wilcox	No			359.5	\$ 50.59
City of Mount Vernon	Franklir			366	181	196	19	19	0	0	0	0	1056	1081	No				Yes	NR	Lake Cypress Springs	158								158.8	\$ 34.18
City of Winnsboro	Franklir			353	224	223	16	16	0	0	0	0	1600	1592	No	Keller's Creamery	Industrial	37.8	Yes	No	Lake Cypress Springs	222.6						Lake Cypress Springs	2009- 391.0	297.7	\$ 46.30
											-	-				Presbyterian Hospital	Hospital	2.4			epge							opge	2014- 553.9		
																TDCJ	Prison	16.8											2020- 1303.4	<u>_</u>	
E. J. Water Co.	Greg	13'		131	0	0	0	0	0	0	0	0	131	131	No	1000	1 13011	10.0	Yes	No	1		2	NR	400/400	Carrizo	No		1000.4	37.4	NC
Garden Acres Water	Greg			49	0	0	0	0	0	0	0	0	49	49	No		1	1	Yes	No	1		2	NR	365/360	Wilcox	No	1	Need Storage	4.46	\$ 23.20
City of Kilgore	Greg			082	1081	777	46	49	0	0	0	0	49	49	No		1	1	Yes	No	Sabine River	1460		300/328/700	540/490/550	Carrizo- Wilcox	No	1	Storage	4.46 896.5	\$ 23.20
nigore	Greg	3//	3 40	002	1001		40	49	0	U	U	U	4300	4908	INU		1	1	res	001	Sabine River	1400	ø	280/290/290	480/465/480	Carrizo- Wilcox	001	1	1	030.0	φ 30.70
	1			-+		L		1		1				1	1						1					Carrizo-					
Liberty City	~				0	0	<u> </u>	1		0	_		4/00	4570		Com. Ht	lask state		N. I					411/387	500/485	Wilcox Carrizo-	N.	Commit and	000	470.4	e
wśc	Greg	148	∠ 15	575	U	U	1	1	0	0	U	U	1483	1576	No	Snow Max	Industrial	1.3	Yes	No			6	110/125/80	600/600/600	Wilcox Carrizo-	No	Groundwater	263	172.4	\$ 38.50
City of Longview													0	0		Texas								650(2)/60	1000/?	Wilcox				'	
Water Utilities	Greg	211	33 21	1265	4093	4481	92	97	0	0	0	1	25318	25844	No	Eastman (Raw Water)	Manufacturing	1288.2	Yes	Yes	Lake Cherokee	3584								6486.1	\$ 23.81
																Texas Eastman															
	+			-+				+		<u> </u>				1		(Treat. Water)	Manufacturing	248.2			Lake Fork Lake O'the	1174								'	
	+											+				Rexam	Manufacturing	68			Pines	0								'	
	1															Air Liquide	Manufacturing	37.2			Sabine River	1132								<u> </u>	

							Con	nnections															Water Treatme	nt or Purchase						
		Resid	lential	Non-Re	sidential	Manuf	acturing	Live	stock	Power G	eneration	То	tal	-	Cu	urrent Major Users						1		Wells			Capacity Expa	nsion Plans	I	
System	County	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	Plan to Add Major Customers	Name	Туре	Annual Use (MG/yr.)	Do You Treat Your Own	Recycle or Reuse	Source	Purchasing Capacity (MG/yr.)	Number	Capacity (GPM)	Depth (Ft.)	Aquifer	Have Wells Declined in Quantity	Source	Planned Capacity (MG/yr.)	Volume MG/yr. (Last Full Yr.)	Costs per 10,000 Gal
															Marathon- LeToureau	Manufacturing	29.5	Water								or Quality				
															LeBus	Manufacturing	20.3												1	·
															Compressed Gas Cyclinder	Manufacturing	13.2													
0															Trinity Industries	Manufacturing	11.6								0					
Sun Acres MHP Tryon Road	Greg	50	55	0	0	0	0	0	0	0	0	50	55	No				Yes		Groundwater		1	30	525	Carrizo- Wilcox Carrizo-	No	Lake of the		3.2	NR
SUD	Greg	1614	1695	5	20	0	0	0	0	0	0	1619	1715	No				No	No	Groundwater		9	400/50/0	835/300/250	Wilcox Carrizo-	No	Pines	737.3	218.5	\$ 51.00
																							0/20/18	250/252/220	Wilcox Carrizo-					
City of Warren City	Greg	121	123	2	3	0	0	0	0	0	0	123	126	No				No	No	City of Gladewater	NR		250/42/207	735/368/1000	Wilcox				11.98	\$ 37.50
West Greg SUD	Greg	1215	123	0	0	0	0	0	0	0	0	1215	1287	No				Yes	No	Groundwater	INIX	7	145/140/140	NR	NR	No			11.30	\$ 38.60
	Ĭ											0	0										160/115							
												0	0										95/115							
City of White Oak	Greg	2042	1967	107	102	0	0	0	0	0	0	2149	2069	No	Gas solutions	Oil/Gas	19.5	Yes	No	City of Longview	380.65								270.7	\$ 27.70
City of Clarksville City	Greg	296	301	13	16	0	0	0	0	0	0	309	317	No				No	No	City of Gladewater	NR								28	\$ 39.50
City of Gladewater	Greg	2704	2653	0	0	0	0	0	0	0	0	2704	2653	No	City of Clarksville City	Wholesale	25.1	Yes	No	Lake Gladewater	NR								261.7	\$ 38.80
															Warren City	Wholesale	11.5													
															Starrville- Friendship Truman in	Wholesale	0.001													
															Smith Housing	Commercial	5.8													
															Authority Texas Die	Commercial	3.5													
															Casting Gladewater	Commercial	3.6												ł	
															Nursing Home	Commercial	1.5													
															American health Care	Commercial	2.3													
Caddo Lake State Park	Harrison	<100	<100	0	0	0	0	0	0	0	0	<100	<100	No				Yes	No	Groundwater		1	60	300	NR	No			2.9	N/A
Cypress Valley Water	Harrison	352	368	0	0	0	0	0	0	0	0	352	368	No				No	No	Groundwater		4	100/50	380/360	Wilcox	No			30.7	\$ 30.15
Elysian																				City of Marsfhall	0.85		50/150	360/380						
Fields WSC Gum Springs	Harrison	276	308	3	3	0	0	0	0	0	0	279	311	No	Trinity			NR	No	Groundwater City of		2	75/150	225/225	Wilcox Carrizo-	No			24.8	\$ 28.00
WSC City of	Harrison		NR										2451	No	Industries	Industrial	5	Yes	No	Longview City of	5	2	200/180	500/500	Wilcox	No			247.6	
Hallsville	Harrison	1043	1074	0	0	0	0	0	0	0	0	1043 0	0	No				No	No	Longview	86	4	27/106	204/243	Carrizo	No			108.4	\$ 65.00
Harleton WSC	Harrison	872	910	5	5	0	0	0	0	0	0	877	915	No						Groundwater		3	63/68 175/150/60	400/500/500	Carrizo- Wilcox	No	NETMWD	18	66.2	\$ 37.00
North Harrison				_			Ū															Ū			Carrizo-		Drill Another			
WSC Rolling Acres WSC	Harrison	337	399	5	5	0	0	0	0	0	0	342 35	404 35	No				Yes Yes	No	Groundwater		3	130/115/100 370	400/450/650 360	Wilcox	No	Well	NR	35 NR	\$ 13.00 NR
Shadowood WSC	Harrison	75	75	0	0	0	0	0	0	0	0	75	75	No				Yes	No	Groundwater		2	70/30	425/425	Cypress	No			10.8	NR \$ 27.27
Waskom Rural water				-					-																					
Supply City of Waskom	Harrison Harrison	245 936	285 957	0 74	0 74	0	0	0	0	0	0	245 1012	285	No				Yes Yes	No	Groundwater		2	110/13 30/160/39	150/150	Cypress Wilcox	No			26.2 99	\$ 34.00 \$ 30.00
**a3KUIII	1101115011	330	331	/4	/4		2	0	0	0	0	0	0					185	INU	Groundwater		0	63/145/62	180/197/182	Wilcox	110				φ 30.00
												0	0										120/116	178/198	Wilcox					
West Harrison WSC	Harrison	374	392	2	2	4	1	0	0	0	0	377	395	No				Yes	No	Groundwater		3	60/25/200	350/350/500	Carrizo- Wilcox	No	Drill a Well	200GPM	38	\$ 76.00
1100	namson	314	382	2	2			U	U	U	U	0	395	INU				Tes	NU	Groundwater Gum Springs WSC	60	3	00/23/200	330/330/300	VVIICOX	UNI	Dim a vVell	2000°W	- 30	φ /6.00
Blocker Crossroads	Harrison	350	383	3	6	0	0	0	0	0	0	353	389	No				Yes	No	Groundwater		2	42/14	270/284	Wilcox	No	Drill A Well	NR	28.4	\$ 31.60
City of Marshall	Harrison	7999	8004	1110	1143	0	0	0	0	0	0	9109	9147	No				Yes	No				NR	NR	NR				1724	\$ 32.38

							Con	nnections															Water Treatme	ent or Purchase						
		Resi	idential	Non-Re	sidential	Manuf	acturing	1	estock	Power G	eneration	Тс	otal	-	Cu	rrent Major Users						1		Wells			Capacity Exp	ansion Plans	İ	
System	County	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	Plan to Add Major Customers	Name	Туре	Annual Use (MG/yr.)	Do You Treat Your Own Water	Recycle or Reuse	Source	Purchasing Capacity (MG/yr.)	Number	Capacity (GPM)	Depth (Ft.)	Aquifer	Have Wells Declined in Quantity or Quality	Source	Planned Capacity (MG/yr.)	Volume MG/yr. (Last Full Yr.)	Costs per 10,000 Gal
Gill WSC	Harrison	793	814	20	23	0	0	0	0	0	0	813	837	No				Yes	No	Groundwater		3	160/150	400/420	Wilcox	No	Drill A Well	NR	64.9	\$ 27.00
												0	0							City of Marshall	Emergency Use Only		120	475	Carrizo					
Leigh WSC	Harrison	794	824	0	0	0	0	0	0	0	0	794	824	No				No	No	Groundwater		3	75/85/130	210/272/165	Wilcox	No			87.3	NR
																				City of Marshall	60									<u> </u>
Brashear WSC	Hopkins	267	290	37	43	0	0	7	9	0	0	311	342	No				No	No	City of Sulphur Springs	34								33.5	\$ 47.24
Brinker WSC	Hopkins	686	747	0	0	0	0	0	0	0	0	686	747	No				Yes	No	City of Sulphur Springs	7	3	100/100/300	350/400/420	Wilcox	No			70.3	NR
City of Como Cornersville	Hopkins	NR	280	0	0	0	0	0	0	0	0	NR	280	No				Yes	No			2	100/160	468/446	Carrizo	No			NR	\$ 38.00
WSC MartinSpring	Hopkins	318	343	0	0	0	0	0	0	0	0	318	343	No				Yes	No			3	100/100//250	350/350450	Wilcox	No			38	NR
s WSC	Hopkins	988	1039	0	0	0	0	0	0	0	0	988	1039	No				Yes	No			6	185/300/100	400/400/350	Wilcox	No			132.1	NR
North																				City of Sulphur			60/100/100	350/400/400						 I
Hopkins WSC	Hopkins	1811	1964	31	29	1	2	45	30	0	0	1888	2025	No				No	No	City of Sulphur Springs	NR								179.4	\$ 41.21
Pickton WSC City of	Hopkins	202	223	0	0	0	0	0	0	0	0	202	223	No				Yes	No			2	100/100	400/400	Wilcox	No			19.6	NR
Sulphur Springs	Hopkins	5334	5355	814	810	22	22	0	0	0	0	6170	6187	No	Ocean Spray	Industrial	96.7	Yes	No	Cooper Lake	4745								1262	\$ 29.17
															Morningstar Speciality	Industrial	74			Lake Sulphur Springs	3193									
										-					Kohler Mix Dairy Farmers	Industrial	36.2													
															of America Hop. Co.	Industrial	34.6													
															Memorial Hosp.	Hospital	14.2													l
Ablas															Flowserve	Industrial	11			Sabine River										ł
Ables Springs WSC	Hunt	946	1079	0	0	0	0	0	0	0	0	946	1079	No				No	No	Authority	365								78.3	\$ 64.75
Country																				City of Terrell	36									
Wood Estates	Hunt	79	95	0	0	0	0	0	0	0	0	79	95	No				Yes	No	Cash Water Supply	2.775	2	25/31	320/325	Nacatoch	No			6187	\$ 49.18
Barrow Subdivision	Hunt	94	98	0	0	0	0	0	0	0	0	94	98	No				Yes	No			2	40/40	531/557	Nacatoch	No			7313	\$ 49.18
Crazy Horse Ranchos Quinlan	Hunt	134	157	0	0	0	0	0	0	0	0	134	157	No				Yes	No	Groundwater		3	39/44/25	120/120/175	Nacatoch	No	Groundwater	Drill a Well	11.2	\$ 49.18
South Subdivision	Hunt	37	39	0	0	0	0	0	0	0	0	37	39	No				Yes	No	Groundwater		2	22/40	272/320	Nacatoch	No			3.8	\$ 49.18
Quinlan North Subdivision	Hunt	58	64	0	0	0	0	0	0	0	0	58	64	No				Yes	No	Groundwater		2	30/25	335/335	Nacatoch	No		Add Storage & Pressure	4.6	\$ 49.18
Caddo Basin SUD	Hunt	2465	2832	0	0	0	0	0	0	0	0	2465	2832	No				No	No	City of Farmersville	50								261.3	\$ 45.23
																				NTMWD	50									
City of Caddo Mills	Hunt	461	461	0	0	0	0	0	0	0	0	461	461	No				Yes	No	City of Greenville	As Required						Caddo Basin	Back-up only	40.9	\$ 51.84
Campbell Water Supply	Hunt	NR	450	NR	18		0		0		0		468	No				Yes	No	Groundwater		4	120/90	360/360	Nacatoch	No	Groundwater	New Well	26	\$ 47.75
																							60/60	260/340	Nacatoch	No				
Cash WSC	Hunt	4524	5077	0	0	0	0	0	0	0	0	4524	5077	Yes	Boles Home	Wholesale	4.7	Yes		Lake Tawakoni	574									
														5000 Homes	Boles ISD Combined	Wholesale	3.6			NTMWD	1792 AF/Yr								541.7	\$ 50.00
															Consumers WSC	Wholesale	1.9													l
															Aqua Source	Wholesale	9.9											-		·
															City of Lone Oak	Wholesale	20													1
															Lone Oak ISD	Wholesale	3.7													
			+	-	+		+	+		+					City of Quinlan Sabine River	Wholesale	61.4													I
City of				<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>					Authority	Wholesale	0.4					-								
Celeste Combined Consumers	Hunt	340	356	0	0	0	0	0	0	0	0	340	356	No			+	Yes	No	Groundwater Lake		2	150/150	1920/1870	Woodbine	No	Surface	1	23.3	\$ 34.90
WSC	Hunt	2886	2916	0	0	0	0	0	0	0	0	2886	2916	No				Yes	Yes Filter	Tawakoni-SRA	547.5						Water-SRA	839.5	172.7	\$ 65.48
																			Backwash											

							Con	nections															Water Treatme	ent or Purchase						
		Resi	dential	Non-Re	sidential	Manuf	facturing	Live	estock	Power G	eneration	Т	otal	-	C	urrent Major Users								Wells			Capacity Exp	ansion Plans		
System	County	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	Plan to Add Major Customers	Name	Туре	Annual Use (MG/yr.)	Do You Treat Your Own Water	Recycle or Reuse	Source	Purchasing Capacity (MG/yr.)	Number	Capacity (GPM)	Depth (Ft.)	Aquifer	Have Wells Declined in Quantity or Quality	Source	Planned Capacity (MG/yr.)	Volume MG/yr. (Last Full Yr.)	Costs per 10,000 Gal
City of Greenville	Hunt	7630	7783	1010	1002	18	18	0	0	0	0	8658	8803	Yes	L-3 Communicatio	Ind/MFG	53.9	Yes	No	Lake Ribitt	1.35								1571.5	\$ 38.53
Orecrivine	Hunt	1000	1105	1010	1002	10	10	Ū	0	Ŭ	0	0000	0000	12-16 MGD	Rubbermaid Inc.	Ind/MFG	26.7	103	110	Lake Tawakoni	6.9								10/1.0	φ 00.00
														12 10 1100	Fiberite Corp.	Ind/MFG	14.6			Lano Fananoni	0.0									
															Other Manufacturing	Ind/MFG	31.8													
															Greenville Electrical	Ind/MFG	14.5													
Hickory Creek SUD	Hunt	962	1063	4	4	0	0	0	0	0	0	966	1067	No					No	Groundwater		3	140	2318	Sabine	No	Yes	2300	87.2	\$ 47.24
																							190	1963	Trinity	No	Drill Well			
																							360	1845	Sulphur	No				
Little Creek Acres	Hunt	26	26	0	0	0	0	0	0	0	0	26	26	No					No	Groudwater		1	20	209	Nacatoch	No				\$ 43.43
City of Lone Oak	Hunt	262	237	44	46	0	0	0	0	0	0	306	283	No				No	No	Cash Water Supply	54.75								19.1	\$ 61.94
North Hunt WSC	Hunt	1150	1224	0	0	0	0	0	0	0	0	1150	1224	No				Yes	No	City of commerce	NR	2	115/350	330/1960	Woodbine	No			91.2	\$ 70.00
Shady Grove WSC	Hunt	375	418	0	0	0	0	0	0	0	0	375	418	No				No	No	City of Greenville	182								29	\$ 60.50
Texas A&M Commerce	Hunt	773	773	0	0	0	0	0	0	0	0	773	773	No				No	No	City of Commerce	72	4	120/160	440/454	Nacatoch	No			83.1	N/A
																				Lamar County			140/120	445/483						
City of Deport Lamar	Lamar	290	290	0	0	0	0	0	0	0	0	290	290	No				Yes	No	Pat Mayse	NR							6124 after	41.7	\$ 57.50
County WSD	Lamar	6068	6538	0	0	0	0	0	0	0	0	6068	6538	Yes				No	No	Pat Mayse Lake Pat Mayse	1825						City of Paris	2010	813.5	\$ 49.00
City of Paris	Lamar	9905	10157	0	0	0	0	0	0	0	0	9905	10157	No				Yes		Lake	5217.5								5225	\$ 30.35
																				Lake Crook Lamar County	7.6									
City of Reno	Lamar	994	1077	35	50	0	0	0	0	0	0	1029	1127	No				No	no	WSD	102.3								102.2	\$ 50.07
City of Roxton	Lamar	287	322	0	0	0	0	0	0	0	0	287	322	No				No	No	Lamar County WSD	22.6								24.5	\$ 55.50
EMC WSC	Marion	645	743	0	0	0	0	0	0	0	0	645	743	No				Yes	No	Groundwater	22.0	А	150/150	250/250	Cypress	No			42	\$ 55.50
EMO WOO	Manon	040	140	Ŭ	Ū	0	Ŭ	Ū	0	Ŭ	0	040	140	110				103	110	Croundwater			150/80	650/370	Cypress	110			72	φ +0.00
City of Jefferson	Marion	1148	1200	0	0	2	3	0	0	0	0	1150	1203	No	Blackburns Syrup	Manufacturing	2.4	No	No	NETMWD	NR				•)				126.4	\$ 21.00
															Nexfor Norbord	Manufacturing	10.2													
															Sonoco	Manufacturing	NR													
Mims WSC	Marion	459	478	1	2	0	0	0	0	0	0	460	480	No				No	No	NETMWD	25								20	\$ 52.26
Shady Shores	Marion	156	162	0	0	0	0	0	0	0	0	156	162	No				Yes	No	Groundwater		1	NR	954	NR				11.7	\$ 38.00
City of Daingerfield	Morris	999	926	175	150	1	1	0	0	0	0	1175	1077	No	(One Not Named)	Manufacturing	NR	No	No	NETMWD	As Needed								138.1	\$ 33.60
City of Lone Star	Morris	686	694	82	85	0	0	0	0	0	0	768	779	Yes	Reilly Ind	Manufacturing	6.1	No	No	NR	Nr								68.7	\$ 66.00
City of Omaha	Morris	600	560	0	0	0	0	0	0	0	0	600	560	No				Yes	No			5	100/40/60	527/300/540	NR	No			36.6	\$ 24.30
City of																							80/110	400/558						
Naples Water Works	Morris	597	594	50	54	3	3	0	0	0	0	650	651	No	Mapa Manufactiring	Manufacturing	0.02	Yes	No	Groundwater		5	90/32/75	360/360/360	Carrizo- Wilcao	No			64.2	\$ 32.50
															Tamko Inc.	Manufacturing	3.8						112/105	400/402	Carrizo- Wilcao					
															Top Hat Inc.	Manufacturing	0.37													
Bright Star- Salem WSC	Raines	1559	1724	0	0	0	0	0	0	0	0	1559	1724	No					No										117.6	\$ 44.00
Cedar Cove Landing	Raines		34							<u> </u>		0	34					No	No	City of Emery									NR	NR
City of East Tawakoni	Raines	532	551	8	9	0	0	0	0	0	0	540	560	No				ļ		City of Emery	180								50.6	\$ 43.90
City of Emory WTP	Raines	650	795	30	38	0	0	0	0	0	0	680	833	No	D · · · - ·			Yes	No	Lake Tawakoni	657				-				2425	\$ 48.00
City of Point	Raines	670	890	24	28	1	1	0	0	0	0	695	919	Yes	Dal-Air Tool Inc.	Manufacturing	52.4	Yes	No	City of Emory	36.5				-				69.7	\$ 47.80
410 WSC	Red River		803		1	0	0	11	11	0	0	11	815	No	David Rozell	Non- Residential	0.259	No	No	Lamar County ESC	54.5								54.5	\$ 61.29
City of															12 Livestock Users	Livestock	5.269													
Bogata	Red River	616	604	0	0	0	0	0	0	0	0	616	604	No				Yes	No	Groundwater		3	300/300/65	325/325/300	Nacatoch	Yes (Dry)			38.2	\$ 37.00

							Con	nnections															Water Treatme	nt or Purchase						1
		Resid	dential	Non-Re	sidential	Manuf	acturing	Live	stock	Power G	eneration	То	tal	-	Cu	rrent Major Users								Wells			Capacity Expa	Insion Plans	I	
System	County	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	Plan to Add Major Customers	Name	Туре	Annual Use (MG/yr.)	Do You Treat Your Own Water	Recycle or Reuse	Source	Purchasing Capacity (MG/yr.)	Number	Capacity (GPM)	Depth (Ft.)	Aquifer	Have Wells Declined in Quantity or Quality	Source	Planned Capacity (MG/yr.)	Volume MG/yr. (Last Full Yr.)	Costs per 10,000 Gal
City of																										Yes (Bacteria, High				
Clarksville	Red River	1474	1370	232	249	5	5	0	0	0	0	1711	1624	No				Yes	No	Langford Lake	123	2	320/350	302/675	Blossom	Sodium)			207	\$ 36.00
City of Detroit Red River	Red River	253	267	28	28	0	0	0	0	0	0	281	295	No				No	No	LCWSD Texarkana	NR	1	110	2020	Trinity	No			22.2	\$ 35.00
County WSC	Red River	1844	1994	0	0	0	0	0	0	0	0	1844	1994	No				Yes	No	Utilities	22	4	170/150	550/550	Blossom/ Blossom/ Nacatoch	No Yes (TDS Up to Max Well #1)			159	\$ 43.50
City of Lindale	Smith	1352	1700	135	160	0	0	0	0	0	0	1487	1860	No				Yes	No	Groundwater		4	550/450	990/880	Carrizo- Wilcax	No			239.1	NR
																							500/800	900/1100	Carrizo- Wilcax					
Garden Valley Golf Resort	Smith	NR	7	0	0	0	0	0	0	0		NR	7					NR	NR	NR									NR	NR
Lindale Rural WSC	Smith	1926	2346	18	19	14	15	4	4	0	0	1962	2384	No				Yes	no	Groundwater		5	280/265/220	1015/972/925	Carrizo	No	Drill a Well	91	319.5	\$ 40.00
																				City of Lindale	0.76		1000/280	1720/1018	Carrizo					
Starrville- FriendshipW SC	Smith	439	530	1	1	0	0	0	0	0	0	440	531	No				Yes	No	Groundwater	0.70	з	55/90/240	NR	NR	No			49.8	\$ 35.00
	onnar	400	000			0	Ŭ	0	0	0	Ŭ	440	551	110				103	110	City of Gladewater	NR		30/30/240			110			43.0	φ 00.00
Twin Oaks Ranch	Smith	42	42	8	8	0	0	0	0	0	0	50	50	No				No	No	Carrol WSC	1.02	1	80	900	Carrizo				7.3	N/A
Lake Bob Sandlin State Park	Titus	110	110	0	0	0	0	0	0	0	0	110	110	No				No	No	Tri-Water WSC	1.13								1.13	N/A
City of Mount Pleasant	Titus	4682	4900	0	0	0	0	0	0	0	0	4682	4900	No	Pilgrim's Pride	Industrial	1080	Yes	No	Lake Bob Sandlin	2750								4810	\$ 27.81
															Tri-Water Corp.	Water Supply	501			Cypress Springs Lake	510									
															City of Winfield	Water Supply	50			Lake Tankersley	3000 AF/Yr Backup									
Northeast Texas Com. College	Titus	0	0	1	1	0	0	0	0	0	0	1	1	No				Yes	No	Tri-Water WSC	0.7	1	300	640	Carrizo- Wilcox	No			7	N/A
Talco Water Department	Titus	270	243	30	30	0	0	0	0	0	0	300	273	No				Yes	No			3	300/350/250	408/430/394	Nacatoch	No			43.3	\$ 31.00
City of Winfield Brookshire's	Titus	185	194	6	16	0	0	0	0	0	0	191	210	No				No	No	City of Mount Pleasant	50								21.7	\$ 3.17
CampJoy WSC	Upshur	95	97	0	0	0	0	0	0	0	0	95	97	No				Yes	No	Groundwater		2	48/48	260/268	NR	No			6.1	\$ 32.00
Country Club Estates	Upshur	33	33	0	0	0	0	0	0	0	0	33	33	No				Yes	No	Groundwater		1	32	491	Wilcox	No			2.8	\$ 38.20
Diana SUD	Upshur	1412	1472	31	48	0	0	0	0	0	0	1443	1520	No				Yrs	No	Groundwater		8	150/66/110	700/630/420	Carrizo- Wilcox	No	NETMUD	240	131.6	\$ 43.11
																							158/160/156	1000/700/650	Carrizo- Wilcox Carrizo-					
City of East																							165/300	496/610	Wilcox					
Mountain	Upshur	540	545	5	6	0	0	0	0	0	0	545	551	No				Yes	No	Groundwater Glennwood		4	325/150	600?	NR	No	New Well	52	51.8	\$ 35.33
Friendship	Upshur	56	58	0	0	0	0	0	0	0	0	56	58	No				Yes	No	Acres Groundwater	0.56	1	110/100 44	415	Carrizo				4.74	\$ 38.20
Friendship	Opsilui			0	0	0	0	0	0	0	0	50	56	INO				Tes	NO	Groundwater		1			Carrizo-	Wells 3 & 4 have				φ <u>38.20</u>
City of Gilmer	Upshur	2450	2450	0	0	0	0	0		0		2450	2450	No				No	No	Groundwater		6	230/250/560	492/519/540	Wilcox Carrizo-	Decreased	Lake Gilmer	540	305.8	NR
Glenwood		704	0.40	0	0	1	1		0	0	0	700		N				No	N.				590/270/150	500/385/141	Wilcox	N		50		0 05 00
WSC	Upshur	781	849	0	0	1	1	0	0	0	0	782	850	No				Yes	No	Groundwater		6	75/75/140	529/480/824 516/539/450	Wilcox Carrizo- Wilcox	No	NETMUD	50	67.9	\$ 35.00
City of Ore City	Upshur	494	463	47	42	0	0	0	0	0	0	541	505	No				Yes	No	Groundwater		3	135/135/150	400/480/790	Wilcox	No	NETMUD	NR	NR	\$ 20.10
Pritchett WSC	Upshur	2182	2305	16	19	2	2	3	3	0	0	2203	2329	No	The Pines Pavement	Recreational	3.8	No	No	Groundwater		17	55/50/70	760/375/562	Carrizo- Wilcox	No			181	\$ 63.32
															Tools MFRS Inc.	Manufacturing	1.4						58/66/73/	615/592/623	Carrizo- Wilcox					
															Boersma Dairy	Livestock	0.6						100/155/100	650/621/770	Carrizo- Wilcox Carrizo-					
								<u> </u>							Xavera Dairy	Livestock	Backup			-		-	35/50/84	490/600/650	Carrizo- Wilcox Carrizo-				ł	
															Green Dairy	Livestock	1.3						42/85/52	570/600/1153	Wilcox				ł	
																							40/107	776/663	Carrizo	Fall in Static			ł	
Rosewood	Upshur	119	121	0	0	0	0	0	0	0	0	119	121	No				Yes	No	Groundwater		2	60/35	415/424	Carrizo	Static Level			9.5	\$ 38.20

							Con	nections															Water Treatme	nt or Purchase					I	
		Resi	dential	Non-Re	sidential	Manuf	facturing	Live	estock	Power G	eneration	т	otal		Cı	rrent Major Users								Wells			Capacity Expa	ansion Plans		
System	County	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	Plan to Add Major Customers	Name	Туре	Annual Use (MG/yr.)	Do You Treat Your Own Water	Recycle or Reuse	Source	Purchasing Capacity (MG/yr.)	Number	Capacity (GPM)	Depth (Ft.)	Aquifer	Have Wells Declined in Quantity or Quality	Source	Planned Capacity (MG/yr.)	Volume MG/yr. (Last Full Yr.)	Costs per 10,000 Gal
Bethel-Ash WSC	Van Zandt	1251	1416	0	0	0	0	0	0	0	0	1251	1416	No				Yes	No	Groundwater		7	72/190/125	577/920/862	Wilcox	No			119.9	NR
																							150/200	770/540						
																							350/170	770/547					ļ!	
Canton North II	Van Zandt		34									0	34	No				No	No	Groundwater		2	35/35	420/420	Wilcox	No Yes			1.83	NR
a t. 4																										(Lower Pump 20				
City of Canton City of	Van Zandt	1785	1860	0	0	0	0	0	0	0	0	1785	1860	No				Yes	No	Mill Creek Lake	730	1	280	520	Carrizo- Wilcox	ft.Since 1988)			298	NR
Edgewood	Van Zandt		595		0		0		0		0		595	No				Yes	No	City Lake									79.2	\$ 57.31
Fruitvale																				Lake Fork									<u> </u>	
WSC	Van Zandt	997	1059	0	0	0	0	0	0	0	0	997	1059	No				Yes	No	Groundwater		\$ Groups	320/164	330/360	Wilcox	No			82.4	\$ 24.37
City of Grand																							394/60	500/280	Wilcox Carrizo-				 	
Saline	Van Zandt	1172	1272	165	165	0	0	0	0	0	0	1337	1437	No				No	No	Groundwater		4	350/120 300/250	500/500	Wilcox Carrizo-	No			168.1	\$ 24.75
Martins Mill WSC	Van Zandt		66		1							0	67	No				Yes	No	Groundwater		2	300/250	470/530	Wilcox	No			NR	NR
MACBEE	Van Zandt	1858	2017	14	17	3	7	2	2	0	0	1877	2043	No	Deen Farms	Dairy	1.7	Yes	No	Lake Fork	730	2	100/100	475/490	Carrizo- Wilcox	No			171.5	\$ 57.99
						-									Chitty Nursery	Plant Farm	0.5													
															Flory Tree Farm	Plant Farm	1													
															Van Zandt Livestock Auction	Livestock	0.5													
R.P.M. WSC	Van Zandt	637	724	3	7	2	2	2	2	0	0	644	735	No				Yes	No	Groundwater		4	70/90	?/?	Wilcox	No	Groundwater	12	75	\$ 47.00
Couth																							150/130	454/470	Wilcox		Laka		ļ!	
South Tawakoni WSC	Van Zandt	1252	1372	0	0	0	0	0	0	0	0	1252	1372	No				Yes	Yes	Lake Tawakoni	365						Lake Tawakoni SRA	182.5	202.2	\$ 58.79
City of Van	Van Zandt		1390	0	0	0	0	0	0	0	0	0	1390	No				No	Yes	Groundwater		4	480/300	750-800	Wilcox	No			158.6	\$ 30.75
																							250/425	750/1200	Wilcox				ļ'	
City of Wills Point	Van Zandt	1472	1629	24	29	174	181	0	0	0	0	1670	1839	No	Wills Point ISD	School	1.1	Yes	No	Lake Tawakoni	365						Water Plant Expansion	To 3.0 MGD	205	\$ 30.38
															9 Commercial	Commercial	1.1												ļ!	
City of Alba Bright Star-	Wood	290	292	15	14	2	2	0	0	0	0	307	308	No	Central Marble	Manufacturing	0.48	Yes	No	Groundwater		2	1306/60	400	NR	No			NR	NR
Salem WSC	Wood	1559	1724	0	0	0	0	0	0	0	0	1559	1724	No				NR	Noi	NR					Carrizo-				117.6	\$ 44.00
Fouke WSC	Wood	1717	1881	17	17	0	0	0	0	0	0	1734	1898	No	Salesman Club	Manufacturing	3	Yes	No	Groundwater		6	225/225/300	1216/1134/925	Wilcox Carrizo-	No			178.8	\$ 33.00
															Hawkins RV Fish Haul RV	Manufacturing Manufacturing	0.05						120/200/120	464/1050/1000	Wilcox					
															Hall Dairy	Livestock	0.05													
Golden WSC #1 & #2	Wood	1072	1135	19	25	1	1	0	0	0	0	1092	1161	No	Tail Daily	LIVESIOCK	0.142	Yes	No	Groundwater		6	100/150/150	450/600/600	Carrizo- Wilcox	No	New Well #7	100	104	NR
																							45/208/115	600/500/500	Carrizo- Wilcox				1	
Silverleaf Resorts, Inc.	Wood	1488	1703	0	0	0	0	0	0	0	0	1488	1703	No				Yes	No	Groundwater		7	105/345/100	1025/660/680	Carrizo- Wilcox	No	Plan to Expand	NR	135.3	\$ 41.16
																							70/14	910/800	Carrizo- Wilcox					
																							170/140	610/725	Carrizo- Wilcox					
Jones WSC	Wood	1448	1570	0	0	0	0	0	0	0	0	1448	1570	No				Yes	No	Groundwater		6	90/250/110	450/550/450	Carrizo- Wilcox	No			122.4	\$ 42.71
Lata To A						<u> </u>			<u> </u>	<u> </u>					Dillo March							-	250/290/250	550/850/375	Carrizo- Wilcox				<mark>ا</mark> ـــــــــــا	
Lake Fork WSC	Wood	894	1101	0	0	0	0	0	0	0	0	894	1101	No	Billy Mack Chamness	Dairy	0.155	Yes	No	Groundwater		6	140/45/200	449/470/250	Carrizo- Wilcox Carrizo-	No			55.6	\$ 41.20
															Dennis Fraxier Dorthy	RV Park	0.03						86/38/100	240/?/215	Wilcox				├ ────	
Cit . 1							+							+	Yarbrough Wood	Dairy	0.08			+							Orable		┨────┤	
City of Mineola	Wood	2121	2123	527	578	0	0	0	0	0	0	2648	2701	No	Memorial Care Center Harvest Care	Commercial	4.3	No	No	Groundwater		3	400/600/750	290/270/260	Carrizo	No	One New Well	45	252.3	NR
															Center	Commercial	0.411													

							Con	nections															Water Treatme	nt or Purchase						
		Resid	dential	Non-Res	sidential	Manufa	cturing	Lives	stock	Power Ge	eneration	Τα	tal		Cu	rrent Major Users								Wells			Capacity Exp	ansion Plans		
System	County	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	1999	2003	Plan to Add Major Customers	Name	Туре	Annual Use (MG/yr.)	Do You Treat Your Own Water	Recycle or Reuse	Source	Purchasing Capacity (MG/yr.)	Number	Capacity (GPM)	Depth (Ft.)	Aquifer	Have Wells Declined in Quantity or Quality	Source	Planned Capacity (MG/yr.)	Volume MG/yr. (Last Full Yr.)	Costs per 10,000 Gal
															Mineola Packing	Commercial	2.5													
New Hope WSC	Wood	702	733	1	1	0	0	1	1	0	0	704	735	No	Tonya McShan	Livestock	1.35	Yes	No	Groundwater		3	125/240/340	600/619/600	Carrizo- Wilcox	Yes (40- 50Ft. In 10 Yrs.)	New Well	100	89.9	\$ 39.50
City of Quitman	Wood	772	786	193	197	0	0	0	0	0	0	965	983	No				Yes	No	Lake Fork Reservoir	365								116	\$ 51.46
Ramey WSC	Wood	1054	1164	23	23	0		0	0	0	0	1077	1187	No				NR	No	Groundwater		9	60/90/120	340/330/480	Carrizo- Wilcox	No			81.8	\$ 40.20
												0	0										240/110/130	460/350/330	Carrizo- Wilcox					·
												0	0										300/35/35	680/480/330	Carrizo- Wilcox					
Sharon WSC	Wood	2163	2346	0	0	0	0	0	0	0	0	2163	2346	No				Yes	No	Groundwater		7	175/150/175	836/730/890	NR	No	New Well	13	181.9	NR
																				Winnsboro	72		160/100	900/885	NR					
																				(Will Not Renew)			250/210	500/570	NR					
City of Winnsboro	Wood	1360	1353	224	223	16	16	0	0	0	0	1600	1592	No	Keller's Creamery	Industrial	37.8	Yes	NR	Lake Cypress Springs	222.6								297.7	\$ 46.30
															Presbyerian Hospital	Hospital	2.4													
															TDJC	Prison	16.8													
Yantis WSC	Wood	235	230	0	0	0	0	0	0	0	0	235	230	No				Yes	No	Groundwater		2	22/100	420/430	Carrizo- Wilcox	Yes (GPM Down 50%)			24.7	\$ 42.00
TOTALS		178103	190717	12138	12529	452	474	115	112	0	1	190808	206284																	
																													52399.46	
			12614		391		22		-3		1		15476																	
			7.08%		3.22%		4.87%		-2.61%		0		8.11%																	
NR - No Response																														
N/A - Not Applicable																														

8.0 APPENDIX B – GUYTON ANALYSIS

LBG-GUYTON ASSOCIATES

PROFESSIONAL GROUNDWATER AND ENVIRONMENTAL ENGINEERING

1101 CAPITAL OF TEXAS HIGHWAY SUITE B-220 AUSTIN, TX 78746 512-327-9640 FAX: 512-327-5573 www.lbg-guyton.com

May 8, 2009

James Ray Flemons, PE, FACEC Senior Vice President Bucher Willis & Ratliff Corporation 8140 Walnut Hill Lane Dallas, Texas 75231

Dear Mr. Flemmons,

At the request of BWR, LBG-Guyton Associates has performed an evaluation of the brackish groundwater supply in the Region D area. The Texas Water Development Board (TWDB) data was searched and parsed for relevant information on brackish groundwater. Information in this database is populated from data obtained by well driller's reports, pumping test results, water quality analyses and other pertinent information obtain by the TWDB through reliable sources.

In general, brackish water that is greater than 1,000 mg/l in total dissolved solids (TDS) is found in the down-dip limits of the aquifers in the region. Most of the brackish water is either found in the Cretaceous aquifers in the northern part of Region D. Those aquifers with brackish water include: Nacatoch, Blossom, Woodbine and the Paluxy and Twin Mountain of the Trinity Aquifer (Figure 1). Brackish water can also be found in some of the deeper Wilcox portion of the Carrizo-Wilcox aquifer (Figure 1). Most wells found in the southeastern portion of the Region D area are completed into the Tertiary age, Carrizo and Queen City Sands that generally produce freshwater (<1,000 mg/l TDS).

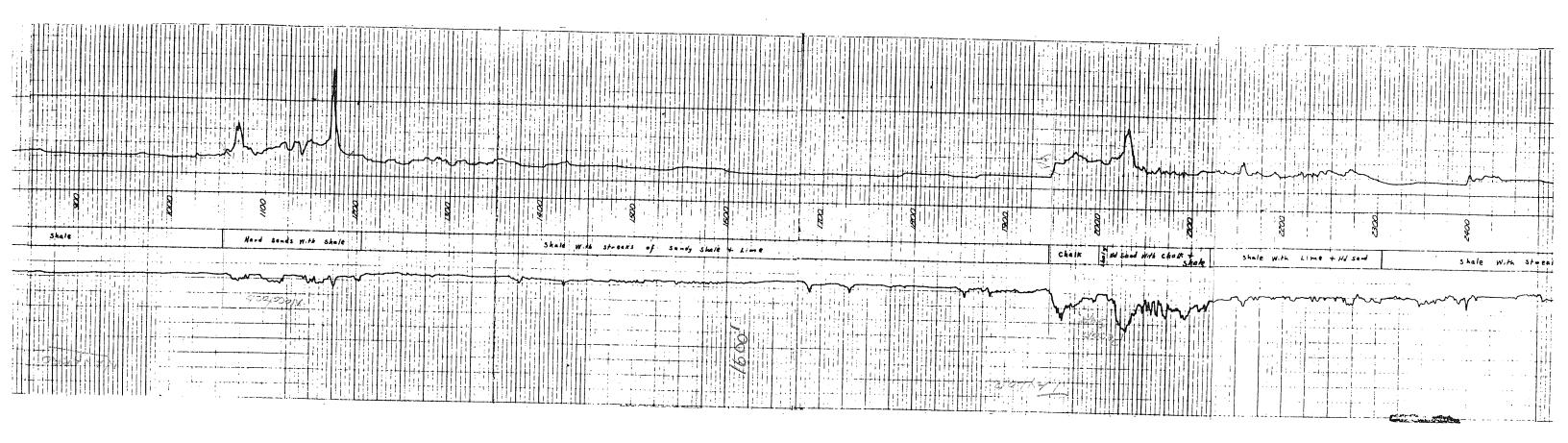
Six geophysical logs were obtained from the Surface Casing Division of the Texas Commission of Environmental Quality representing the different aquifers with known brackish water. These logs are made from oil field test wells that span a number of the shallower aquifers. The state identification numbers for those wells are: 17-29-202, 17-21-807, 17-22-404, 16-33-601, 34-02-702, and 35-33-602 (Figure 1). Logs found in the northern portion of Region D show the Cretaceous aquifers and logs in the southern area show the Carrizo-Wilcox Aquifer. Based on review of geophysical logs in the area, brackish water is generally found in strata at depths less than 2,000 feet.

An evaluation of these logs indicate only a portion of each geologic unit is capable of producing significant water. The Cretaceous aquifers only have small footage intervals of sand or limestone that can actually produce water. The Wilcox aquifer generally has a variety of sandy layers that can produce water. Throughout the total thickness of the geologic unit, a variety of water quality can be interpreted from any particular sand interval on the geophysical log. Depending on the interval that is screened and open to produce water to the well will determine the overall average chemistry from a particular well. Generally, deeper sands have lower resistivities on the geophysical log, which correspond to higher TDS content of the water produced from those intervals.

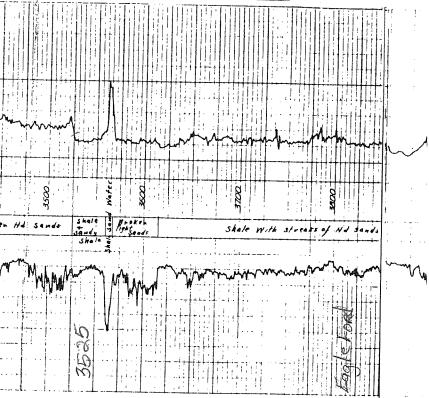
Based on these logs and other wells completion information, wells completed in the Cretaceous aquifers (Nacatoch, Blossom, Woodbine and the Paluxy and Twin Mountain of the Trinity Aquifer) generally produce lower volumes often less than 50 gallons per minute (gpm) with one reported as high as 120 gpm completed into the Blossom Aquifer. Wells completed into the Wilcox generally have higher reported yields ranging up to about 600 gpm. However, a practical expectation for Wilcox brackish wells is about 100 to 300 gpm.

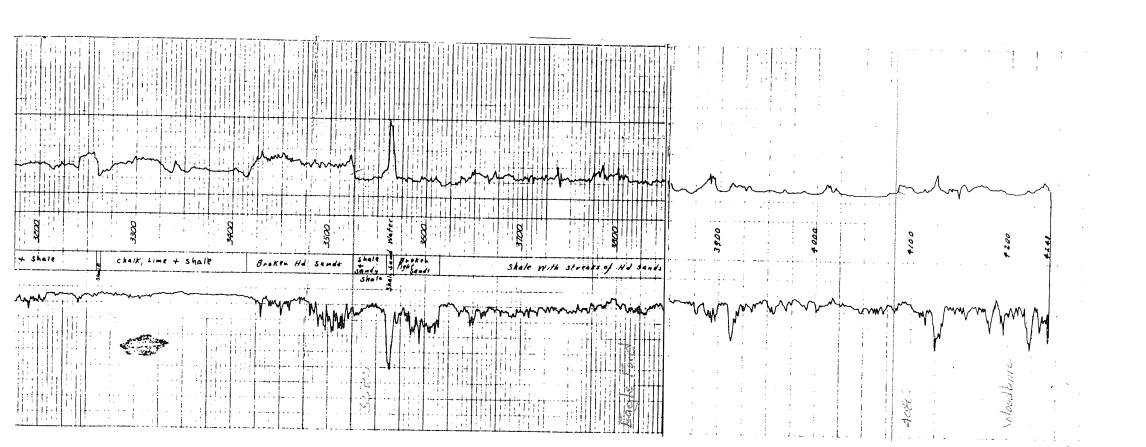
Brackish wells could be developed in the Woodbine and Trinity aquifers in Lamar and Red River Counties. Experience in Texas indicates that each brackish groundwater wellfield needs to be evaluated individually to identify specific water quality characteristics and well production capacity. It is possible to find brackish groundwater in most of the downdip sections of the Nacatoch aquifer, but especially in Hunt, Hopkins, and Bowie Counties. In the Carrizo and Wilcox aquifers, there are zones of brackish groundwater in many Region D counties where the aquifers exists. Generally, the brackish groundwater will be found in the deeper section of the aquifers, but there are exceptions to this general rule.

Brackish groundwater in the aquifers described here is generally suitable for desalination and use for industrial and municipal use. The groundwater at each location would require specific assessment and treatment processes would need to be tailored for that groundwater and for the requirements of the water user group. One consideration in treating brackish groundwater is the disposal of the concentrate from the treatment. There are various approaches to disposal, such as discharge into surface water or injection, and this component of the treatment system should be assessed as part of the overall planning of the brackish groundwater development.

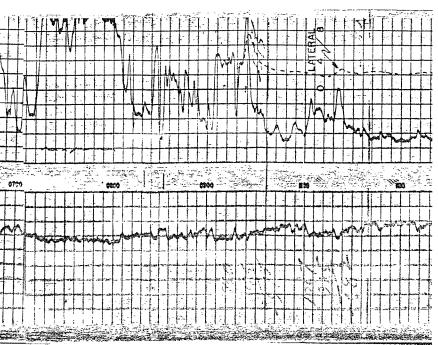

> Sincerely, LBG-GUYTON ASSOCIATES

e

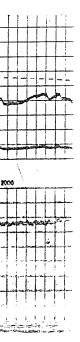

/James Beach, PG

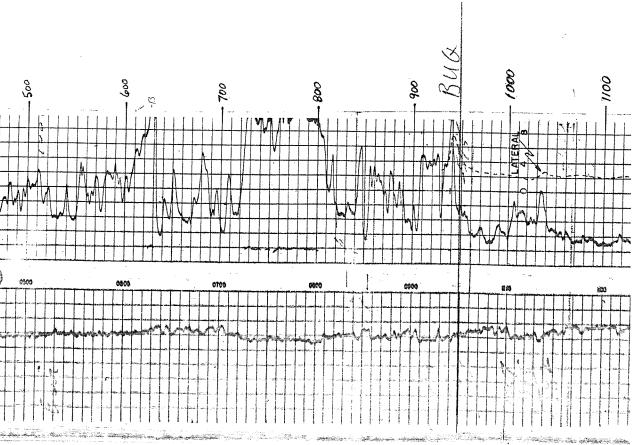

Reproduction A Specialty Second COMPANY Second COMPANY Second Second S	Q5 UX340270L	Location of Well Lection of Well Lecture Lector Lection Lection S/L WELLI LOGS 200' FROM S/L WELLI OLASS F1 TAKEOR DESCRIPTING MELLI OLASS F1 LING MORE COMPANY: PARSON & ALIDILER. WILLOOAT D'ASS F1 LING NO. BY LECTION TO PROBLEM. STUDY OF FOULT RATING. SATURATIONS F1 MILLOOAT COUNTY: RAING NO. BY LECTIONS F1 LING NO. BY LECTIONS F1 MILLOOAT COUNTY: RAING NO. BY LING NO. BY LI	Riter Reading 1.3881 fr. Sarred run 1.3130 P m Source Meaund 1.3711 fr. Flaukad run 1.3130 P m Source Meaund 1.3711 fr. Flaukad run 1.3130 P m Source Meaund 1.3711 fr. Flaukad run 1.3130 P m Source Meaund 1.1111 201 fr. Time well occupied by outfair 1.320 Mn Sourcen Depth 1.111111 2020 fr. Total time incurred by run 1.220 Mn Sourcen Depth 111111 2020 fr. Mleage incurred by run 1.220 Mn Sourcen Depth 111111 2020 fr. Meage incurred by run 1.220 Mn Vistoria Depth Reached MUD CHARACTERISTICS MUD CHARACTERISTICS Munc 1.000 600		-	F-POTENTIAL	8	Sandy Shale	Sindy Shale and Shale	
		Loca 3001 1 M II 01 ² P/ II	First Ree Lark Ree Footser Casing S Bottom 1 Total D Nature: Bottom	<i>w e</i>	Dar Dar					ید کر ، ، <u>و ،</u> ، ،

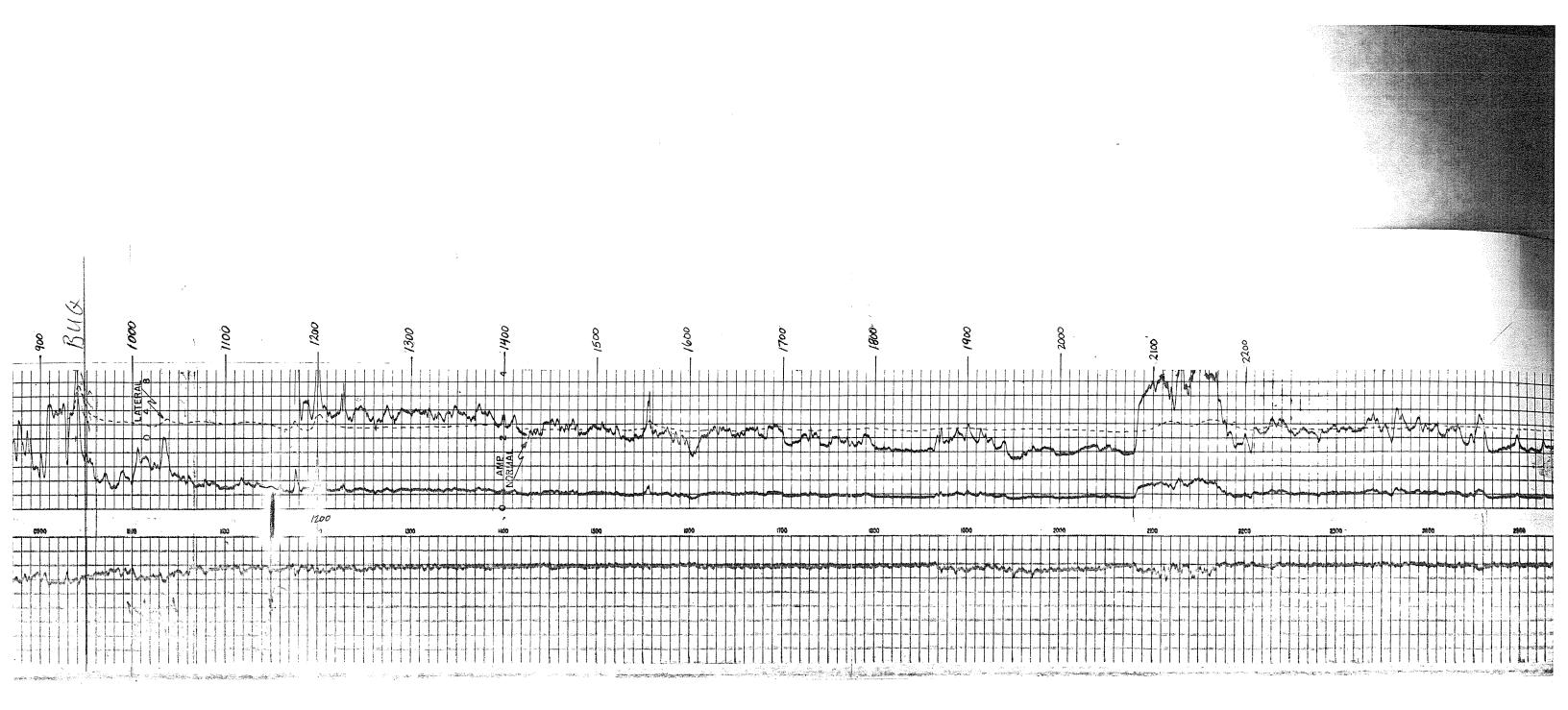
			7007			300											
 	 	·····		 	-		 ; ; ; ;	+	hale I	1	-+	+ + + - 	∔ ∔ +	•	÷	• • • • •	
 		+ +		 ~	0												

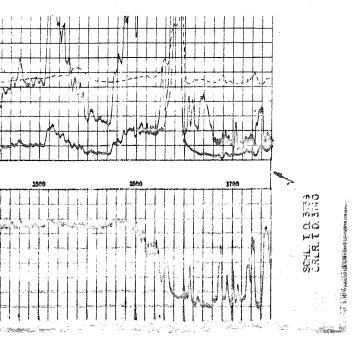


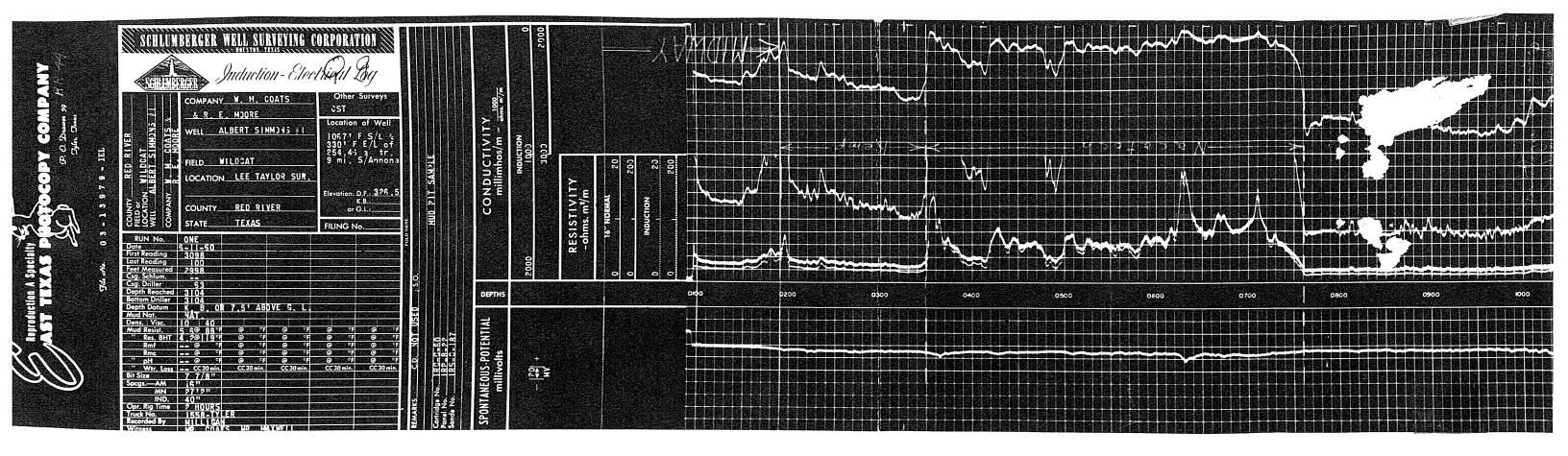
ne + Hd sand Shale W.th Storeaks of Sandy Shale	e HdSonds + Challt Shale With Sandy 8	ihale Chalk + Shale With Chi Shale Shale Streaks of Sandy Shale	alk + shale chalk, Lime + shale	Broken h
	A Contraction of the second se	Man marine more provided		

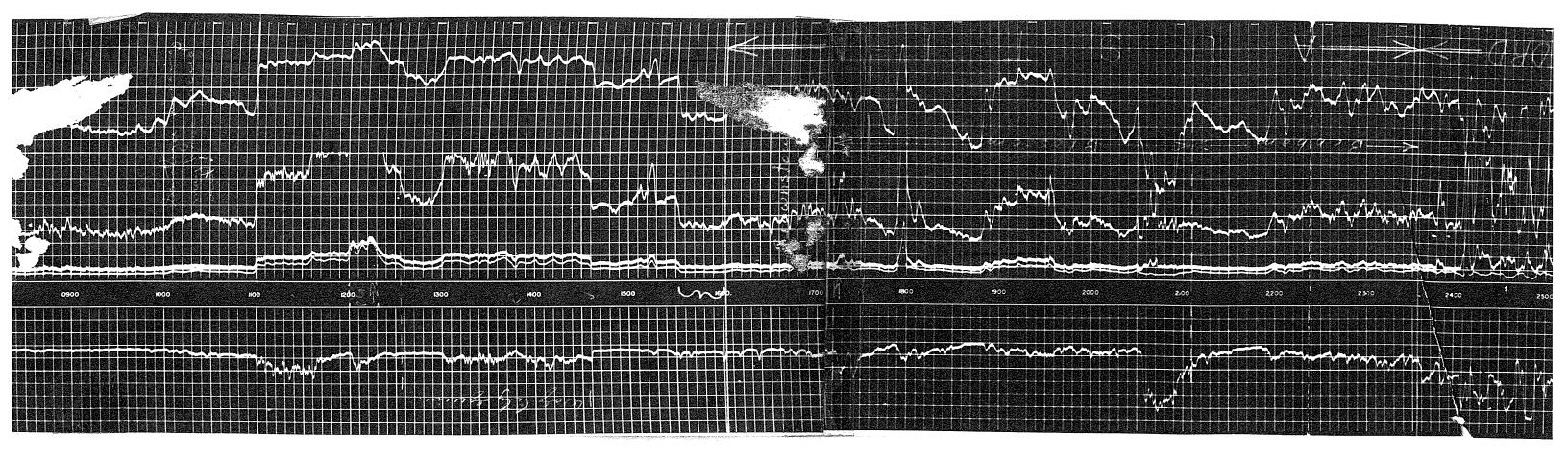


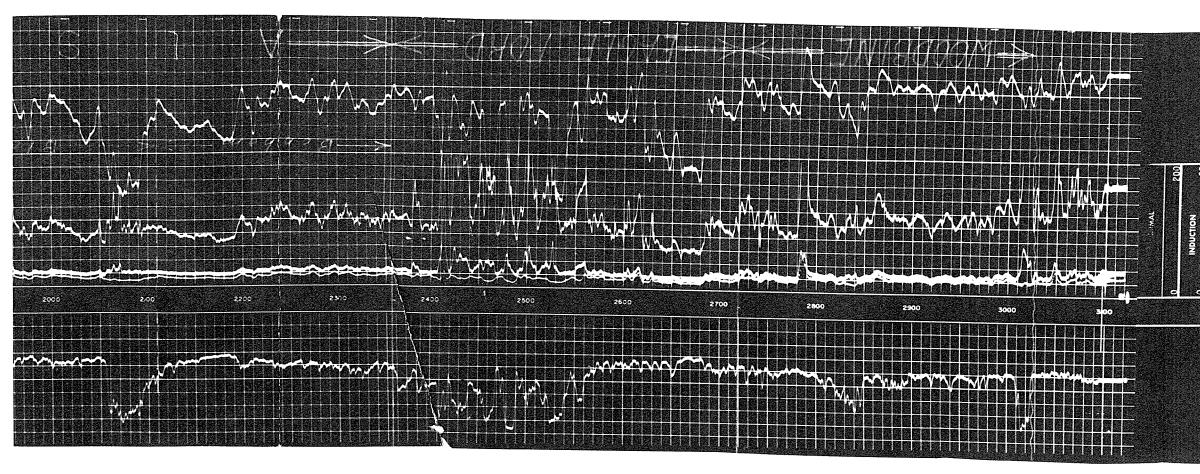

COUNTY. SECOND AND THE PROPERTY AND THE	
FIELD OR LOCATION. EAST TETAS	
WELL MM. BATER IT	
COMPANY. THE TEASE CO.	
LO.	
	800 000 000 000 000 000 000 000 000 000

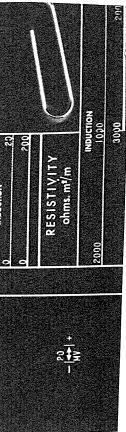


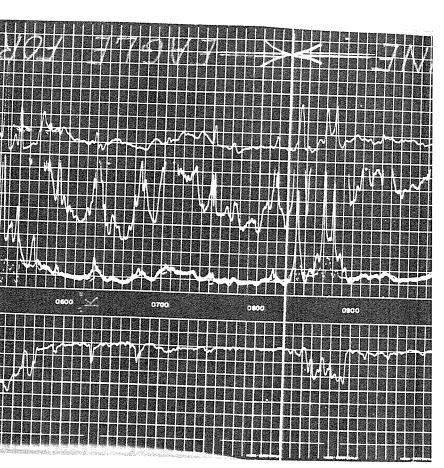

		محموري المحمال المحالي الم	میں ہے۔ مرحمہ ایک		
REFERENCE	THE THE THE THE THE	4			
					<u><u></u> <u></u></u>
	No. 1911	M W W Y MM M M A A			
	┥╍┟┼╌┝╌┠╴╤╌╤┥┑┥┥╌╞╴╞╶┝╴┝┥╌┝╵╴┾┤╴		WEFFATTER MATTER WINTER		
	Ŋ <u>_</u> ┣ <u></u>			Mar My Mar Line	
	<u>┥╢╲╶┝╫┽╶┝┽┾┼┼┽┽┽┽</u> ╪╗┼╉	de 4			
╺┶╍╎╌┼┼┼┝┟┟╋┥┥╋┥╴╴╴╴					
			<u>└─────</u> ┤ <u>┤</u> <u>┤</u> <u>┥</u> ┥┥┥┥┑┼┑┤┝╸┥╸┥┑┥╺┥┑┥╺╄╶┥╺╄╶┥╸┥	<u></u>	
and the second	1946년 1월 1947년 1947년 1948년 1 1949년 1949년 1948년 1948년 1948년 1948년 1948년 1948		المراجع والمحاولة والمعادية والمتعادية والمتعاط والمحافية والمحافظ والمحافظ والمحاد والمحافظ والمحافية والمحاف		
		una luton	en e		1200 P 200
0000 B300		CON CON	000 000 000 000 000 000 000 000 000 00		*200 2000
8200 B200 B200					

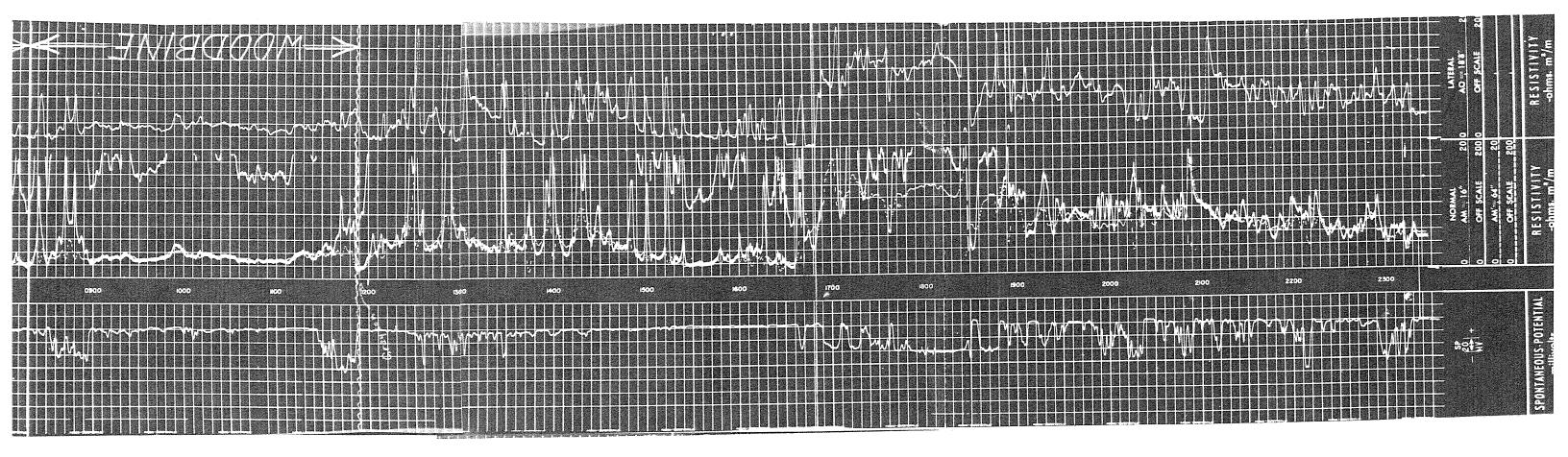


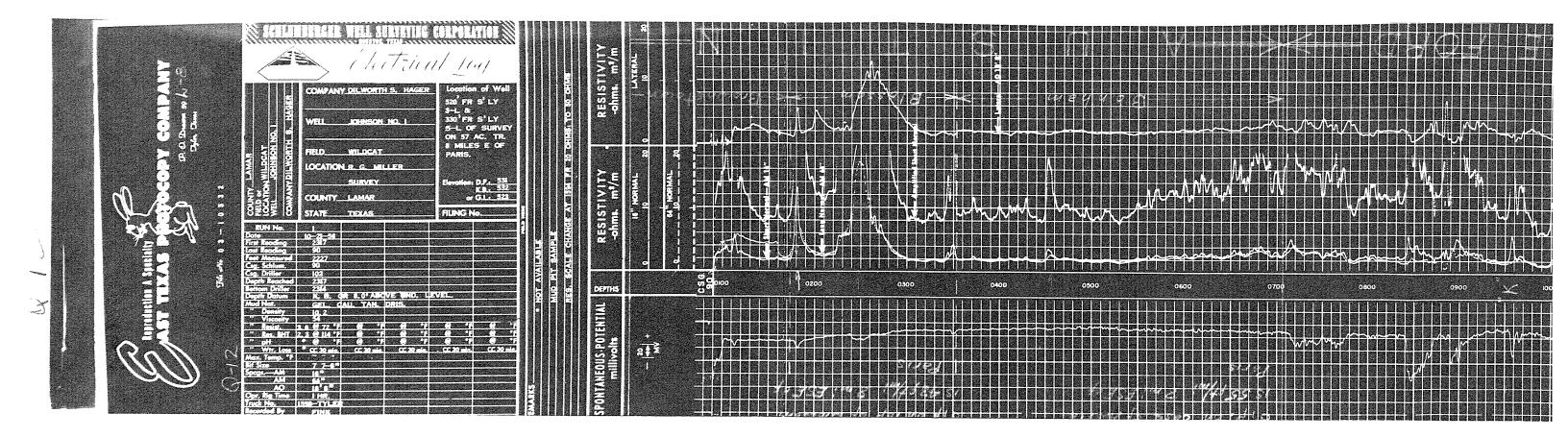

All of the second secon	

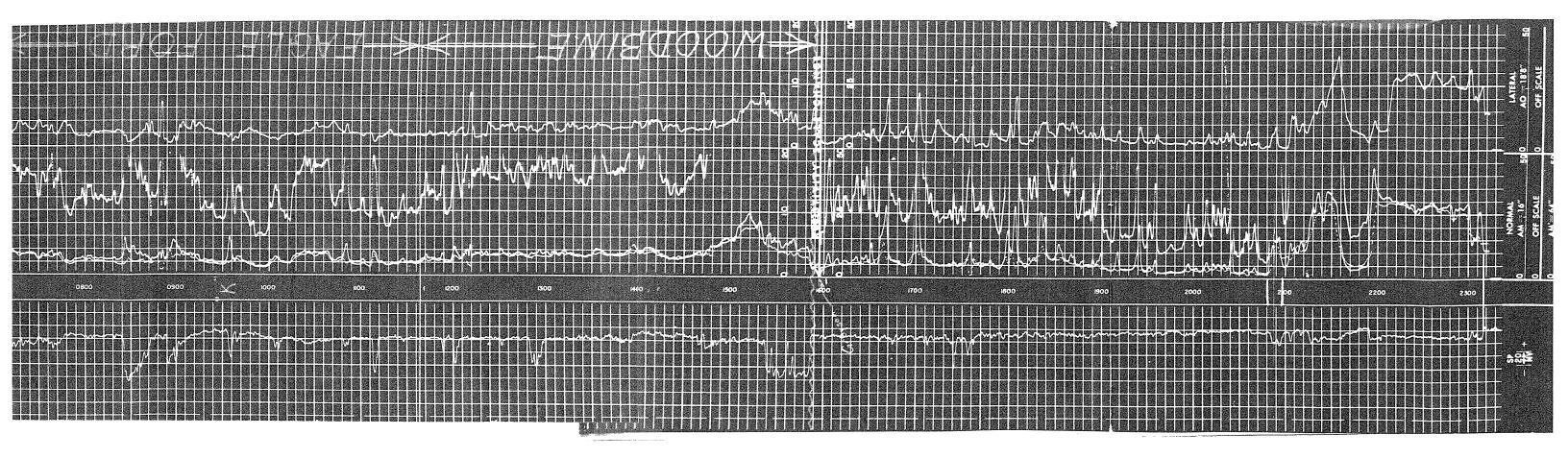


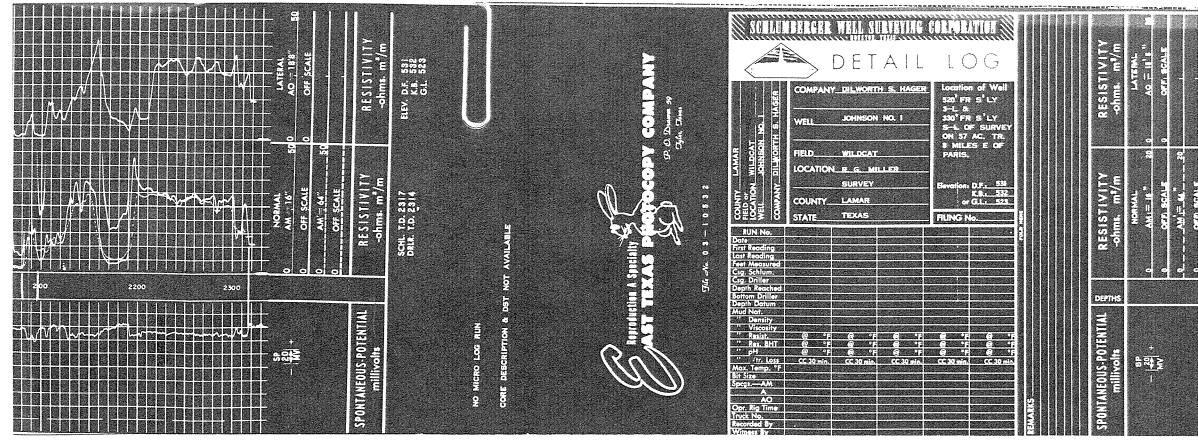


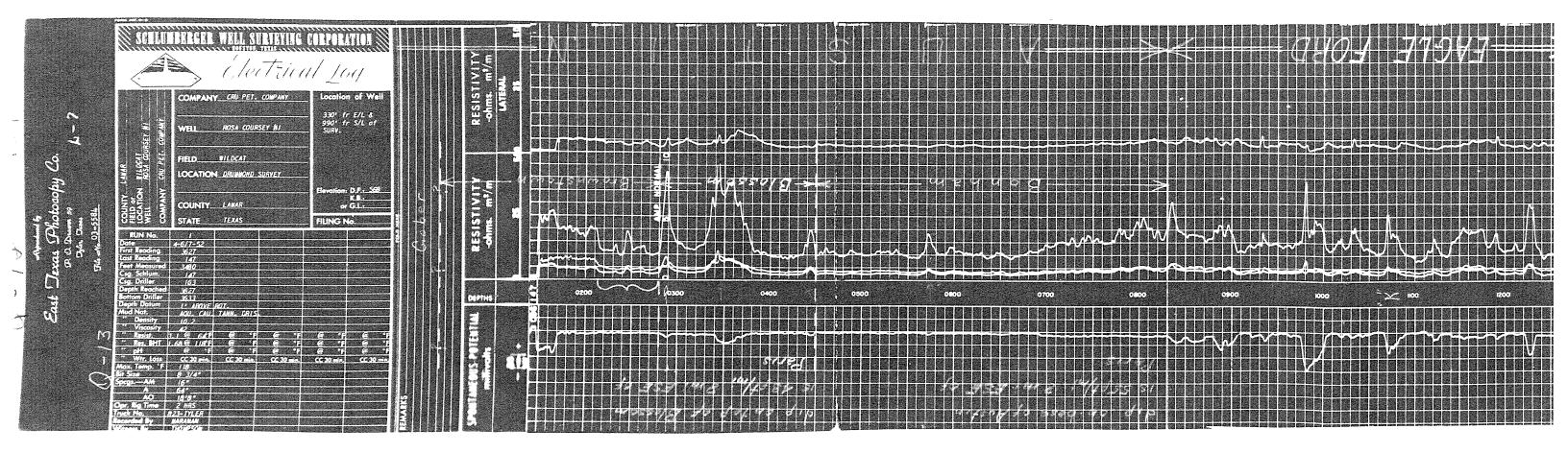


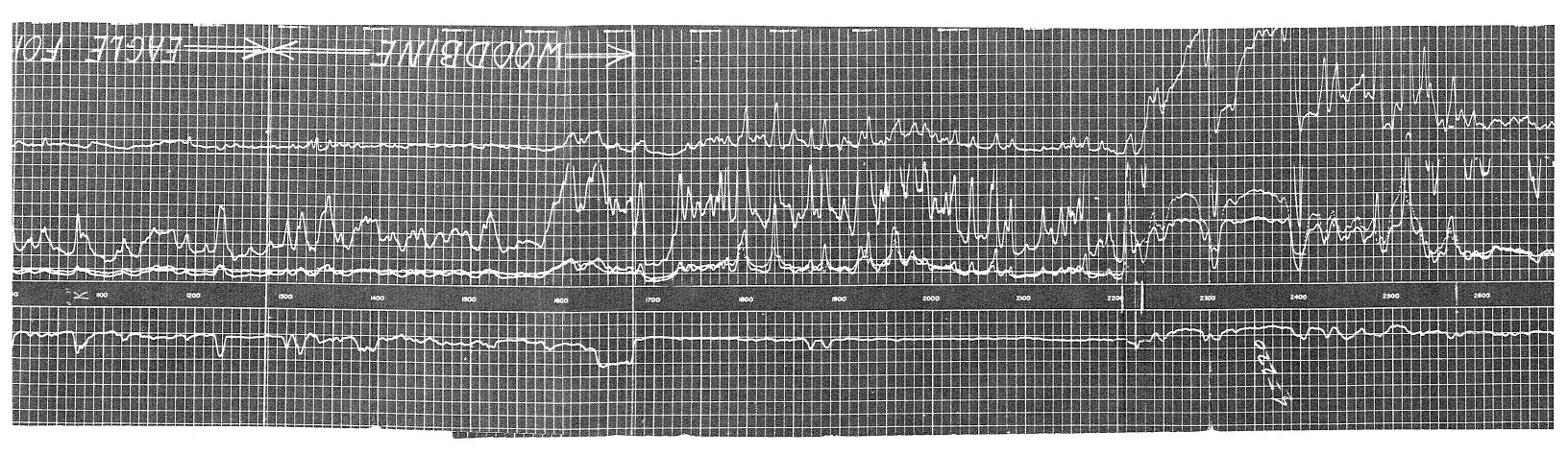


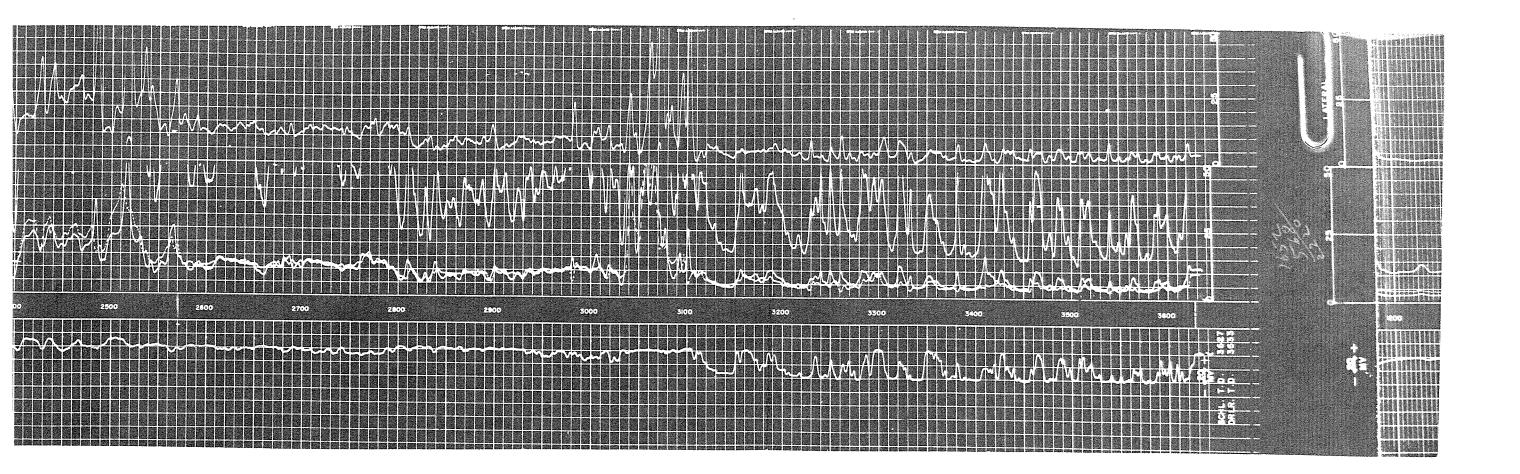



RUN No. OHE FLUNG No.	RESISTIVITY RESISTIVITY RESISTIVITY RESISTIVITY RESISTIVITY RESISTIVITY RESISTIVITY RESISTIVITY RESISTIVITY RESISTIVITY RESISTIVITY RESISTIVITY RESISTIVITY RESISTIVITY RESISTIVITY REFUNCTION REFUNC	
Construction of the second of	SPONTANEOUS-POTENTIAL	






ACTINE AL ACTINE	LATEAL LATEAL AO = 100° 20 OFF SCALE 200 OFF SCALE 200 OFF SCALE 200 AD = 100° 20 OFF SCALE 200 AD = 100° 20 AD = 200° 20 AD = 20° 20 AD = 20° 20		
Contraction of the contraction o	NORMAL NORMAL 0 AM = 16" 20 0 OFF SCALE 200		
SPONTANEOUS POTENTIAL SPONTANEOUS POTENTIAL millivolts LAMAG COUNTY, TEXAS D ETAIL 5 = 100	- 100 + 101 + 100		



9.0 APPENDIX C –TWDB COMMENTS AND RESPONSES

TWDB Comments on Draft Final Region-Specific Study Reports:

Region-Specific Study Number 2: Brackish Groundwater

- 1. The report is a summary of existing information collected from a few sources. Unfortunately, the most important questions (i.e., tasks listed in the Contract Scope of Work) that the study set out to answer were never answered. Please see the following comments on the scope of work tasks not completed.
- 2. Task A1: The contract scope of work states that water system surveys from the previous planning cycle would be reviewed. Please conduct the review as stated in the contract scope of work and document the effort in the final report.

Response: Water system surveys from the previous planning period have been reviewed and the effort documented in the report. Summary of the analysis is provided in Section 3.3 of report and Section 7, Appendix A contains the compilation of the water system survey analysis.

3. Task A2: The contract scope of work states that potential use for industrial needs would be focused upon. Please evaluate the use of brackish groundwater to meet industrial demands as stated in the contract scope of work and document the effort in the final report.

Response: Industrial, commercial and generally non-residential needs were focused on in the review of the water system surveys from the previous planning period. An additional telephone survey was conducted of major non-residential users and is documented in Section 3.3.1.

- 4. Task B: The contract scope of work states that a detailed analysis of lack of alternatives would be performed. Please conduct the alternatives analysis as stated in the contract scope of work and document the effort in the final report.
 - Response: The detailed analysis of lack of alternatives is inherent in many items of the report, such as the desalination process, current costs and brine disposal options, WUG proximity to oil and gas reserves and known brackish groundwater (new Section 3.7 and existing Table 4), and review of the water surveys (updated effort). After review of the water surveys, WUGs with lack of alternatives have been identified in the report City of Clarksville (Section 3.3.2), City of Clarksville City (Section 4.5) and City of Tatum (Section 4.6). A new summary on the lack of alternatives is also included in Section 5, Conclusion.
- 5. Task B1: The contract scope of work states that geophysical logs and well driller reports would be used to locate potential brackish groundwater fields. Please locate and utilize this information as stated in the contract scope of work and document the effort in the final report. Additionally, please identify the aquifer name, depth zones, and well fields that will be used for supply of brackish groundwater to the Region.

- Response: Geophysical logs and well driller reports have been used to locate potential brackish groundwater fields. These are summarized in new Section 3.4 and actual logs and well driller reports are included in Appendix B and Appendix E. Information obtained from geophysical logs, well driller reports and other studies are located on existing Figures 4 – 15, new Figure 16, existing Figure 22 and additionally summarized in existing Table 4. Aquifer name, depth zones, and well fields that could be used for supply of brackish groundwater to the Region is provided in new Figure 16 and new Section 3.4.
- 6. Task B2: The contract scope of work states that production capacity of wells in brackish groundwater zones and the number of wells required to meet demands would be determined. Please include this analysis in the final report.
 - Response: Production capacity of wells in brackish groundwater zones is estimated in new Section 3.4. As an example, the number of wells required for a community of 1,440 connections is presented in Section 3.3.2. The number of wells required will depend on the production quantity and quality characteristics specific to the WUG.
- 7. Task D1: The contract scope of work states that potential brackish groundwater projects would be identified for incorporation into the Regional Plan. Please include this analysis in the final report.

Response: The water user groups identified in Sections 3.3.2 and 3.3. (as stated at the end of Section 3.3.3) are identified as potential brackish groundwater projects for consideration into the Regional Plan.

8. Task D2: The contract scope of work states that water supply alternatives would be ranked. Please include this analysis in the final report.

Response: A statement on ranking alternatives is included in Section 5, Conclusion.

9. Task D3: The contract scope of work states that specific brackish water projects would be recommended if appropriate. Please include this analysis in the final report.

Response: Recommendation of specific brackish groundwater projects is included in Section 3.3.2 and Section 5, Conclusion.

10. Page 1, paragraph 4: Please change ph to pH.

Response: Corrected.

11. Page 4, section 2.0, paragraph 1, lines 7-8. The original information is from TWDB's Water for Texas 2007. Please consider using the original source and referencing it accordingly.

Response: Original source used and referenced.

12. Page 4, section 2.0, paragraph 2, last line. The reference "TWDB" is incomplete. Please complete the reference.

Response: Completed.

13. Page 8, section 2.2, paragraph 3, line 3. The "Merriam-Webster" reference in not included in the References section on pages 66 and 67. Please include the reference.

Response: Reference included.

14. Page 10, section 2.4, paragraph 1, lines 4-5. The "Arroyo and Kalaswad" reference is not listed in the References section on pages 66 and 67. Please include the reference.

Response: Reference corrected.

15. Page 16, Table 2. The reference "BWR and others" used in the table header is not listed in the References section on pages 66 and 67. Please include the reference.

Response: Reference included.

16. Page 47, section 4.2.6, paragraph 1, last line. The "USBOR 2001" reference is not listed in the References section on pages 66 and 67. Please include the reference.

Response: Reference included.

17. Page 47, section 4.2.7, paragraph 1, lines 2 and 8. The "USBOR 2001" reference is not listed in the References section on pages 66 and 67. Please include. References have not been cited consistently in the report. For example, Guyton 2003 and LBG Guyton Associates 2003 are used interchangeably as are NRS 2008 and NRS and Consultants 2008. Please cite references consistently in the report.

Response: Referenced cited consistently.

18. The term "mildly saline" (for example, pages 5 and 18) is incorrect. The correct term is "slightly saline". Please correct wherever used incorrectly in the report.

Response: The term "mildly saline" has been corrected to "slightly saline."

10.0 APPENDIX D – TCEQ PROPOSED GENERAL PERMIT

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

NOTICE OF PROPOSED UNDERGROUND INJECTION CONTROL GENERAL PERMIT AUTHORIZING THE USE OF A CLASS I INJECTION WELL TO INJECT NONHAZARDOUS BRINE FROM A DESALINATION OPERATION OR NONHAZARDOUS DRINKING WATER TREATMENT RESIDUALS

The Texas Commission on Environmental Quality (TCEQ or commission) proposes to issue a general permit (Proposed General Permit Number WDWG010000) authorizing the use of a Class I injection well to inject nonhazardous brine from a desalination operation or nonhazardous drinking water treatment residuals. The proposed general permit applies to the entire state of Texas. This general permit is authorized by Texas Water Code, §27.023.

PROPOSED GENERAL PERMIT. The executive director has prepared a draft general permit that provides requirements and conditions for the authorization of Class I injection wells to inject nonhazardous brine from a desalination operation or nonhazardous drinking water treatment residuals. The executive director proposes to require regulated facilities to submit a Notice of Intent to obtain authorization for injection.

The executive director has reviewed this action for consistency with the goals and policies of the Texas Coastal Management Program (CMP) according to Coastal Coordination Council (CCC) regulations, and has determined that the action is consistent with applicable CMP goals and policies.

A copy of the proposed general permit and fact sheet are available for viewing and copying at the TCEQ Office of the Chief Clerk located at the TCEQ's Austin office, at 12100 Park 35 Circle, Building F. These documents are also available at the TCEQ's 16 regional offices and at *http://www.tceq.state.tx.us/permitting/waste_permits/advgroups/uic_gp.html* on the TCEQ Web site.

PUBLIC COMMENT/PUBLIC MEETING. You may submit public comments about this general permit. In addition, the TCEQ will hold a public meeting on this general permit pursuant to 30 TAC §331.202. A public meeting is not a contested case hearing. The purpose of a public meeting is to provide the opportunity to submit comments or to ask questions about the general permit. The public meeting will be held as follows: June 2, 2009, at 1:30 p.m. at the TCEQ Austin Office, 12100 Park 35 Circle, Building E, Room 254S.

Written public comments must be submitted to the Office of the Chief Clerk, MC 105, Texas Commission on Environmental Quality, P.O. Box 13087, Austin, Texas 78711-3087 or electronically at http://www5.tceq.state.tx.us/ecmnts/index.cfm within 30 days from the date this notice is published in the *Texas Register* or at the end of the public meeting, whichever is later.

APPROVAL PROCESS. After the comment period, the executive director will consider all the public comments and prepare a written response. The response will be filed with the TCEQ Office of the Chief Clerk at least ten days before the scheduled commission meeting when the commission will consider approval of the general permit. This commission meeting will be open to the public. The commission will consider all public comments in making its decision and will either adopt the executive director's response or prepare its own response. The commission will issue its written response on the general permit at the same time the commission issues or denies the general permit. A copy of any issued general permit and response to comments will be made available to the public for inspection at the agency's Austin and regional offices. A notice of the commissioners' action on the proposed general permit and a copy of its response to comments will be mailed to each person who made a comment. Also, a notice of the commission's action on the proposed general permit and the text of its response to comments will be published in the *Texas Register*.

MAILING LIST. In addition to submitting public comments, you may request to be placed on a mailing list to receive future public notices mailed by the Office of the Chief Clerk. You may request to be added to: (1) the mailing list for this specific general permit; (2) the mailing list for a specific county; and/or (3) the mailing list for a specific applicant name and permit number. Clearly specify which list(s) to which you wish to be added and send your request to TCEQ Office of the Chief Clerk at the address listed previously. Unless you otherwise specify, you will be included only on the mailing list for this specific general permit.

AGENCY CONTACTS AND INFORMATION. If you need more information about this general permit or the permitting process, please call the TCEQ Office of Public Assistance, at 1-800-687-4040. General information about the TCEQ can be found at our Web site at *http://www.tceq.state.tx.us/*. Further information may also be obtained by calling Kathryn Flegal at (512) 239-6890.

Si desea información en Español, puede llamar al 1-800-687-4040.

Issue Date: April 14, 2009

11.0 APPENDIX E – WELL DRILLERS LOGS FROM HAYES ENGINEERING, INC.

UL. 6.2006 10:38AM A

ANA-LAB

VO. 794 P. 2

Corporate

CMID

2600 Dudley Road -- Kilgore, TX 75662

903/984-0551 FAX 903/984-5914

-, PEXX: GELER

mple Description		Taken		Project	Received_	Mail
6926 City of East Mountai	.n	06/22/2006	0940	319734	06/22/2006	//
	Results	Units	eği	Analyze	d By	
Parameter	ND	mg/L	0.250	06/22/2		
Nitrite	ND	mg/L	0.250	06/22/2	006 GDG	
Nitrate	450	mg/L	30,0	C6/24/2		
Chlorida	ND	mg/L	0.500	06/22/2	006 GDG	
Fluoride	29.4	mg/L	1.50	06/22/2	ços gdg	
Sulfate	9.5	mg/L	1	06/23/2	006 CBC	
Laboratory Dissolved Oxygen	ND	mg/L	0.021	06/26/2	006 RED	
Bulfide as Hydrogen Sulfide	ND	mg/L	0.02	06/26/2	006 RED	
Sulfide	ND	11975 11971	100	06/29/2		
Acidity		mg/⊒	10	06/28/2		
Alkalinity (as CaCO3)	200 177	mg/L	0.5	06/26/2		
Carbon Dioxide		mg/L	0.5	06/26/2		
Free Carbon Dioxide	2.49	mg/L	0.5	06/26/2		
Carbonate (as CaCO3)	2.93 2100	umbos/cm		06/26/2		
Lab Spec. Conductance at 25 C		PtCo Units	5.0	06/22/2		
Color	ND	mg/L	0.5	06/26/2		
Bicarbonate (as CaCO3)	197	-	0.5	06/26/3		
Hydroxide	ND	mg/L		06/27/2		
Total Dissolved Solida	950	mg/L	50 1	06/23/2		
Turbidity	1.97	NTU	1	06/23/		
Laboratory pH	8.2 @ 12C	BU	0.001		· · · · ·	
Silver	ND	mg/L	0.001			
Aluminum	D	mg/L	0.010	· · · · ·		
Arsenic	ND	mg/L	0.002			
Barium	0,235	mg/L	0.001			
Beryllium	ND	mg/L	0.001			
Calcium	11.5	mg/L	0.200			
Cadmium	ND	mg/L	0,001			
Chromium	ND	mġ/L	0.001			
Copper	ND	mg/L	0.001			
Iron	ND	mg/L	0,040			
Mercury	ND	mg/L	0.000			
Potassium	11.0	mg/L	0,500			
Magnesium	4.53	mg/L	0.200			
Manganese	0.0306	mg/L	0,001			
Sodium	360	. mg/L	5.00	06/23/		
Nickel	ND	mg/L	0.001			
Lead	ND	ng/L	0.001			
Belenium	ND	mg/L	Q.002			
Zing	0,00906	mg/L	0.005		2006 HVM	
Total Hardness Ca/Mg Eq. CaCO3	47.4	mg/L	0.200	06/23/	2006 ALN	

412/11/11/22

9606022mm///

114420-02000

Corporate Shipping: 2600 Dudley Rd., Kilgore, TX 75662 - http://www.ana-lab.com

No. Constituent Weil 4 No. 1 Color ND PCo Units IT 2 DH Color ND PCo Units IT 2 DH Color ND PCo Units IT 3 Alkatinity.CacO3 240 ppm PC ppm 4 Total Harchess 49.3 ppm It ppm It 5 Ition 0.0682 ppm It It It PCo Units It 7 Turbidity.SIO2 ND ppm It													
Constituent results unit Color ND Proo Units Alkalinity CaCO3 240 ppm Total Harchress 0.0682 ppm Icon 0.0683 ppm Total Harchress 0.0683 ppm Icon 0.0683 ppm Total Harchress 0.0683 ppm Icon Acidity SiO2 ND ppm Acidity SiO2 ND ppm PCo Units Chlorides 0.033 ppm PTU Sodium Acidity SiO2 ND ppm Chlorides 0.003 ppm PCo Sodium ND ppm PPM Fluorides ND ppm PPM Chonides 0.00 ppm PPM Contromum ND ppm PPM Chonides ND ppm PPM Elevel ND ppm PPM Chonides ND ppm PPM <th>/eli 4</th> <th></th> <th></th> <th></th> <th></th> <th>Well 2</th> <th>Well 3</th> <th>Well 2</th> <th>Well 3</th> <th>Well 2</th> <th></th> <th>Well 2+4</th> <th>Well 3+4</th>	/eli 4					Well 2	Well 3	Well 2	Well 3	Well 2		Well 2+4	Well 3+4
Color ND PCo Units PH Akkallinty CacC03 8 PCO Point Internation 8 PCO PPP I foat Hardness 32 PPP PPP I foat Hardness 0.0683 PPP PPP Manganese 0.0033 PPP PPP Manganese 0.0033 PPP PPP Attablity SiO2 ND PPP PPP Attablity SiO2 ND PPP PPP Chondes 382 PPP PPP Attablity CacO3 PPP PPP PPP Chondes 382 PPM PPP Attablity CacO3 PPM PPP PPM Attablity CacO3 PPM PPM PPM Chondes ND PPM PPM Attablity CacO3 PPM PPM PPM Chonductin ND PPM PPM Chonductin ND PPM PPM Chonductin <			TX MCL		Reference	4/18/1997	12/29/2001	4/10/2000	6/10/2003	5/20/2005	5/20/2005 Weighted		Weighted
pH pH 8 Alkalinity CaCO3 240 ppm Iton 100 2003 ppm Iton Nanganese 0.0532 ppm Turbidity SiO2 ND NTU Leg(L Turbidity SiO2 ND ppm Sodium 0.0633 ppm Sodium 900 ppm Fluoride 0.063 ppm Sodium 900 ppm Fluoride ND ppm Chorrides 900 ppm Sodium 900 ppm Chornium ND ppm		o Units		15	SCL (30 TAC 290,105(b))		5 2						
Alkalinity CaCO3 240 ppm Total Harchress 49.3 ppm Total Harchress 0.0682 ppm Manganese 0.0682 ppm Turbidity SiO2 ND NTU Asidity CaCO3 uEq/L Acidity CaCO3 ppm Chondes 382 Potasium ND Arsenic ND Auminum ND Conductium ND Auminum ND Auminum ND Permeture 0.0022 Beryllium ND Dissolved Oxygen 0.002 Dissolved Oxygen 0.002 No 0.002 Dissondred	œ				SCL (30 TAC 290.105(b))	8	8.4		8.4			8.0	8.2
Total Hardness 49.3 ppm Itom 0.0882 ppm Itomatices 0.0882 ppm Turbidity Sio2 ND UEq/L Acidity CaCO3 UEq/L UEq/L Chorides 382 ppm Chorides 382 ppm Chorides 382 ppm Cadmium ND ppm Fluoride ND ppm Cadmium ND ppm Arsenic ND ppm Cadmium ND ppm Copporturn ND ppm Discould ND ppm Copporturn ND ppm						202			200			222	124
Icon 0.0682 ppm Manganese 0.033 ppm Acturb(a) SIO2 ND UE/UL Acturb(a) SIO3 UE/UL UE/UL Acturb(a) SIO3 UE/UL UE/UL Chlorides 382 ppm Sodium 382 ppm Paraenic ND ppm Acsenic ND ppm Cadmium ND ppm Cadmium ND ppm Cadmium ND ppm Aurninum ND ppm Cadmium ND ppm Aurninum ND ppm Aurninum ND ppm Lead ND ppm Dissolved Oxygen 0.0082 ppm Dissolved Oxygen 0.0022 ppm Marateury ND ppm Norent 0.0022 ppm Norent ND ppm Marateury ND ppm		_				7.8	14.5		12.7			29.27	32.50
Manganese 0.033 ppm Turbidity SiO2 ND NTU Turbidity SiO2 ND NTU Chindies Sodium Sodium Sodium Sodium Sodium Si2 ppm Arsenic ND ppm ppm Arsenic ND ppm ppm Cadmium ND ppm ppm Cadenum ND ppm ppm Cadenum ND ppm ppm Lead ND ppm ppm Dissolved Oxygen 0.0034 ppm ppm Chondum ND ppm ppm ppm Silver ND ppm ppm ppm N		-		0.3	SCL (30 TAC 290.105(b))	0.17	0.025		0.059			0.117	0.047
Turbicity SIO2 ND NTU Acidity CaCO3 UEq/L Chlondess 382 Potassium 382 Potassium 9pm Sodium 0 Potassium ND Potassolved Oxygen 215 Pota ND Barlum ND Barlum ND Barlum ND Selenium ND Potassolved Solids ND Selenium ND Potassolved Solids ND Nitrate ND Potassolved Solids ND Pota ND <				0.05	SCL (30 TAC 290.105(b))	0.01	0.0149		0.0118			0.022	0.024
Acidity CaCO3 Jeq/L Chlorides \$\$20 Chlorides \$\$22 Chlorides \$\$22 Potastium ND Parsenic ND	1					0.9	Q						
Chlorides \$		7				0	9						
Sodium 382 ppm Fluonde ND ppm Fluonde ND ppm Arsenic ND ppm Cadmium ND ppm Consolution ND ppm Cadmium ND ppm Lead ND ppm Dissolved Oxygen 0.0084 ppm Cost 215 ppm Dissolved Oxygen 0.0084 ppm Mithere 0.0022 ppm Mithere 0.0022 ppm Mithere ND ppm Mithere 0.0022 ppm Nithere 0.0022 ppm Mithere ND ppm Silver ND ppm Nithere 0.0022 ppm Nithere 0.0022 ppm Nithere ND ppm Nithere ND ppm Nithere ND ppm Nithere ND ppm <	*	-		300	SCL (30 TAC 290.105(b))	69.1	161	161	156	239	135	97 75	64 64
Potassium Potassium ND ppm Fluoride ND ppm Arsenic ND ppm Arsenic ND ppm Cadmium ND ppm Cadmium ND ppm Cadmium ND ppm Comport ND ppm Comput ND ppm Arsenic ND ppm Comput ND ppm Arsenium ND ppm Mercury ND ppm Mercury ND ppm Nitrie ND ppm Silver 0.0022 ppm Magnestum 3.55 ppm Nitrie ND ppm Nitrie ND ppm Nitrie ND ppm Nitrie ND ppm Nitriei ND ppm	ŝ				Not regulated by State	144.3	225	211	208			299	306
Fluoride ND ppm Arsenic ND ppm Arsenic ND ppm Caromium ND ppm Chornium ND ppm Chornium ND ppm Chornium ND ppm Choronium ND ppm Copper ND ppm Copper ND ppm Lead ND ppm Zind 0.0034 ppm Zind 0.0035 ppm Marcury ND ppm Mercury ND ppm Magnesium 3.55 ppm Selenium ND ppm Magnesium 3.55 ppm Nitrate ND ppm Nitrate ND ppm Selenium 3.55 ppm Nitrate ND ppm Selenium 3.55 ppm Nitrate ND ppm Selenium ND ppm Selenium ND ppm Nitrate ND ppm Notei ND ppm Selenium ND ppm Notei </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td>2.78</td> <td></td> <td></td> <td></td> <td></td> <td>26'0</td> <td>1.34</td>						2	2.78					26'0	1.34
Arsenic ND ppm Arsenic ND ppm Cadmium ND ppm Chomium ND ppm Copper ND ppm Copper ND ppm Copper ND ppm Copper ND ppm Auminum ND ppm Auminum ND ppm Auminum ND ppm Dissolved Oxygen 0.0084 ppm Zin 0.0082 ppm Mercury ND ppm Magnesium 3.15 ppm Silver ND ppm Magnesium 3.55 ppm Nitrate ND ppm Silver ND ppm Nitrate ND ppm Silver ND ppm Nitrate ND ppm Silver ND ppm Nitrate ND ppm Magnesium 3.55 ppm Nitrate ND ppm Nitrate ND ppm Magnesium 3.55 ppm Nitrate ND ppm Nitrat		-	4		MCL for inorganic (30 TAC 290.104(b))	0.4	0.184		0.884				
Arsenic ND ppm Cadmium ND ppm Cadmium ND ppm Copentum ND ppm Copertium ND ppm Copertium ND ppm Copertium ND ppm Aurnhum ND ppm Lead ND ppm Dissolved Oxygen 0.0084 ppm Dissolved Oxygen 0.0084 ppm Dissolved Oxygen 0.0023 ppm Dissolved Oxygen 0.0022 ppm Mattrate 0.0022 ppm Nitrate ND ppm Nitrate ND ppm Mattrature 0.0022 ppm Mattrature 0.0022 ppm Mattrature 13.9 ppm Nitrate ND ppm Mattrature 2.200 chms Silver ND ppm Mattrature 2.200 chms Nitrate ND ppm Mattrature 2.200 chms Nolei ND ppm Notel ND ppm Mattratore 2.0022 Dom				2	SCL (30 TAC 290.105(b))								
Cadmium ND ppm Chromium ND ppm Chromium ND ppm Constant ND ppm Augpper ND ppm Augpun ND ppm Eleryfilum ND ppm Eleryfilum ND ppm Dissolved Oxygen 0.0084 ppm Dissolved Oxygen 0.0036 ppm Dissolved Oxygen 0.0032 ppm Nitrate ND ppm Selenium 0.0022 ppm Nitrate ND ppm Silver ND ppm Nitrate ND ppm Nitrate ND ppm Nitrate ND ppm Nitrate ND ppm Notedutivity 2.55 ppm Noted ND ppm <			0.05		MCL for inorganic (30 TAC 290.104(b))	<0.005	Q						
Chromlum ND ppm Copper ND ppm Beylilum ND ppm Lead ND ppm Zinc 0.0084 ppm Zinc 0.0084 ppm Dissolved Oxygen 215 ppm Dissolved Oxygen 215 ppm Mercury ND ppm Mercury ND ppm Selenium 0.236 ppm Nitrate 0.236 ppm Selenium 0.236 ppm Satium 0.236 ppm Mercury ND ppm Satium 0.236 ppm Selenium 3.55 ppm Satium 3.55 ppm Nitrate ND ppm Satium 3.55 ppm Nagnesium 3.55 ppm Nickel ND ppm N			0.005		MCL for inorganic (30 TAC 290.104(b))	<0.005	Ŋ						
Copper ND ppm Aluminum ND ppm Lead ND ppm Lead ND ppm Zinc 0.0084 ppm Zinc 0.0084 ppm Dissolved Oxygen 215 ppm Dissolved Oxygen 215 ppm Marcury ND ppm Kaite 0.236 ppm Marcury ND ppm Selenium 0.235 ppm Stiver ND ppm Salver 0.0022 ppm Calcum 13.5 ppm Magnesium 3.55 ppm Nitrate ND ppm Silver ND ppm Silver ND ppm Silver ND ppm Nattle ND ppm Nitrate ND ppm Nitrate ND ppm Nole ND ppm Magnesium 3.55 ppm No ND ppm Nitrate ND ppm Nole ND ppm Nole ND ppm ND ND <td></td> <td>-</td> <td>0.1</td> <td></td> <td>MCL for Inorganic (30 TAC 290.104(b))</td> <td><0.005</td> <td>Q</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-	0.1		MCL for Inorganic (30 TAC 290.104(b))	<0.005	Q						
Aurinnum ND ppm Beryllium ND ppm Lead ND ppm Zinc 0.0084 ppm Zinc 0.0084 ppm Dissolved Oxygen 215 ppm Dissolved Oxygen 215 ppm Marcury ND ppm Nitrate 0.236 ppm Mercury ND ppm Mercury ND ppm Magnesium 3.55 ppm Magnesium 3.55 ppm Mittee ND ppm Ninte ND ppm Magnesium 3.55 ppm Ninte ND ppm Ninte ND ppm Nickel ND ppm Mickel ND ppm Nickel ND ppm Mitate ND ppm No 20022 ppm Mitte ND				Ţ	SCL (30 TAC 290.105(b))	<0.01	Q						
Beryllium ND ppm Lead ND ppm Dissioved Oxygen 0.0084 ppm Dissioved Oxygen 215 ppm Dissioved Oxygen 215 ppm Dissioved Oxygen 215 ppm Matury 0.236 ppm Matury ND ppm Nitrate 0.0022 ppm Silver ND ppm Silver ND ppm Silver ND ppm Silver ND ppm Nitrate 0.0022 ppm Silver ND ppm Silver ND ppm Nitrate 3.55 ppm Magnesium 3.55 ppm Nitrate ND ppm Nitrate ND ppm Notal Dissolved Solids ND ppm Notel ND ppm ND= ND ppm Notel </td <td></td> <td>-</td> <td></td> <td>0.05 to 0.2</td> <td>SCL (30 TAC 290.105(b))</td> <td></td> <td>0.0284</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-		0.05 to 0.2	SCL (30 TAC 290.105(b))		0.0284						
Lead ND ppm Zinc 0.0084 ppm CO2 0.0084 ppm CO2 215 ppm CO2 0.236 ppm Mitrateury ND ppm Nitrateury ND ppm Nitrateury ND ppm Nitrateury ND ppm Selenium 0.0022 ppm Silver ND ppm Cadduativity 3.55 ppm Inpperature 3.55 ppm Nitrite ND ppm ND ppm nthite Notellativity 2.500 ohms ND ppm nthite Nutrite ND ppm ND ppm nthite ND ppm nthite ND ppm nthite ND ppm nthite ND ppm nth ND ppm nth<		-	0.004		MCL for inorganic (30 TAC 290.104(b))	-	Q						
Zinc 0.0084 ppm Dissolved Oxygen 215 ppm H2S 215 ppm H2S 215 ppm H2S 215 ppm H2S 236 ppm Mercury ND ppm Mercury ND ppm Mercury ND ppm Steenium 0.0002 ppm Silver ND ppm Silver ND ppm Calclum 13.9 ppm Silver ND ppm Nitrate ND ppm Suffate ND ppm Nitre ND ppm Suffate ND ppm Nickel ND ppm N		-					Q		9			-	
Dissolved Oxygen 215 ppm CO2 225 ppm Hartury 0.236 ppm Mercury ND ppm Mercury ND ppm Mercury ND ppm Nitrate 0.236 ppm Selenium 0.022 ppm Selenium 0.0022 ppm Salenium 0.0022 ppm Salenium 0.0022 ppm Salenium 3.55 ppm Conductivity 2.200 ohms Imperature 3.55 ppm Suffate ND ppm Nickel ND ppm Nickel ND ppm Nickel ND ppm Nickel ND ppm No ppm nu Nickel ND ppm Merel ND ppm Merel ND ppm Magnesolved Solids 2200 ppm Magnesolved Solids 2200 ppm ND=Not Detected ND ppm Merel ND ppm Merel ND ppm Molit#2 capacity 11		-		5	SCL (30 TAC 290.105(b))	0.02	0.039					0.014	0.023
CO2 215 ppm H2S Beruty ND ppm Baruty ND ppm ppm Marcuty ND ppm ppm Marcuty ND ppm ppm Nutrate 0.236 ppm ppm Selenium ND ppm ppm Salout 13.9 ppm ppm Calcium 13.9 ppm ppm Magnesium 3.55 ppm ppm Ninte ND ppm ppm Ninte ND ppm ppm Ninte ND ppm ppm Nickei ND ppm ppm Nickei ND ppm ppm Nickei ND ppm ppm Mickei ND ppm ppm Nickei ND ppm ppm Mickei ND ppm ppm Moteit ND					مى يى يې مەركىيى يې مەركىيى يې	3.8						1.83	0.00
H2S ppm Banlum 0.236 ppm Martateu ND ppm Nitrateu ND ppm Nitrateu ND ppm Selenium ND ppm Silver ND ppm Silver ND ppm Silver ND ppm Silver ND ppm Conductivity 2.55 ppm Nitrite ND ppm Sulface ND ppm Nitre ND ppm Nitre ND ppm Notel		-			1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -							111	111
Barium 0.236 ppm Mercury ND ppm Nitration ND ppm Selenium ND ppm Salver ND ppm Salver ND ppm Salver ND ppm Salver ND ppm Cadourum 3.55 ppm Matter 3.55 ppm Mitrie 3.55 ppm Nutrie 2200 ohms No ppm ppm No ppm no No ppm no No ppm no ND ppm no ND= no	· I	-		0.05	SCL (30 TAC 290.105(b))								
Mercury ND ppm Mitrate N10 ppm Selenium 0.002 ppm Salver 0.002 ppm Silver ND ppm Silver 13.9 ppm Calcium 3.55 ppm Magnesium 3.55 ppm Importure 3.55 ppm Nitrite ND ppm Sulfate ND ppm Nitrite ND ppm Nitrite ND ppm Nitree ND ppm Nickel ND ppm N ND ppm	- 1	_			MCL for inorganic (30 TAC 290.104(b))	0.04	0.061					0.141	0.152
Nitrate NID ppm Selenium 0.0022 ppm Selenium 0.0022 ppm Silver 13.9 ppm Calcium 13.9 ppm Calcium 3.55 ppm Temperature 3.55 ppm Conductivity 2200 ohms Nitre ND ppm Suffate ND ppm Nickel ND ppm No ND ppm	· 1	-	0.002		MCL for inorganic (30 TAC 290.104(b))		2		ł				
Selenium 0.0022 Silver ND Conductivity 3.55 Temperature 3.55 Nimte ND Sulfate ND Nimte ND Nickel ND NC ND ND ND		-	9		MCL for inorganic (30 TAC 290.104(b))	0 .5	9		9				
Silver ND Calclurm 13.9 Calclurm 3.55 Temperature 2.50 Dultrite 2.00 Nitrite ND Nitrite ND Nitrite ND Nitrite ND Nitrite ND No ND Nitrite ND No ND Nickei ND Nickei ND No ND		-	0.05		MCL for inorganic (30 TAC 290.104(b))	<0.05 <	9						
Calcium 13.9 Magnesium 3.55 Temperature 3.55 Temperature 3.55 Total Dissolved Solids ND Nirthe ND Nirthe ND Nirthe ND Nirthe ND Nirthe ND Notekei ND Nickei ND ND=Not Detected 140 Weil #2 capacity 115 Weil #3 capacity 115				0.1	SCL (30 TAC 290.105(b))	<0.005	9					1	
Magneslum 3.55 Temperature 3.55 Temperature 2200 Nitride ND Sulfate ND Nickel ND ND=Not Detected 140 Weil #2 capacity 115 Weil #3 capacity 115		_				1.6	3.89		3.56			7.96	9.07
Temperature 2200 Conductivity 2200 Nifrie ND Sulfate ND Sulfate ND Nickei ND NU NU NU NU <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td>6^{.0}</td><td>1.15</td><td></td><td>0.81</td><td></td><td></td><td>2.27</td><td>2.39</td></t<>		_				6 ^{.0}	1.15		0.81			2.27	2.39
Conductivity 2200 Nifrite ND Sulfate ND Sulfate ND Nickel ND Nickel ND Nickel ND N ND N ND N ND N ND ND ND ND ND NO ND ND ND NO ND ND ND		o	_				1						
Nitrite Sulfate Total Dissolved Solids Nickel Nickel * = * * * * * * * *		g				600						14:28	1138
Sulfate Sulfate N Total Dissolved Solids 22 * = ND=not Detected ND=Not Detected ND=Not Detected ND=Not Detected NUell #2 capacity Vol #3 capacity	- 1	_	•		MCL for inorganic (30 TAC 290.104(b))	2	!			· · · · · · · · · · · · · · · · · · ·			
Total Dissolved Solids [] Nickel Nickel Nickel N Nickel N ND=Not Detected [] ND=Not Detected [] Well #2 capacity [] Well #3 capacity [] Well #3 capacity [] No [] #3 capacity [] No [] #3 capacity [] No [] #4 capacity [] No [] No [] #4 capacity [] No	3	_	_	300	SCL (30 TAC 290.105(b))	13	12.8		13.1			1	
Nickel * = ND=Not Detected Vetit #2 capacity Weil #3 capacity	200	_		1000	SCL (30 TAC 290.105(b))	430	556		582			849	922
		_				9	Ð						
			-										
	140 000		-			-							
•	150 000												
		-	-				-]

 $\hat{(}$

 (\cdot)

NO. 798 P. 2

Corporate

2600 Dudley Road -- Kilgore, TX 75662

CMID

903/984-0551 FAX 903/984-5914

02/02/2009

5785	Descrip		1 01		Taken		Project	Received	Mail
0100	TORO T	top Well	L Cons	truction	01/19/	2009 17:40	420110	01/20/2009	Mall
	West H	arrison	Water	Supply C	no				, ,
	imeter 			Results	Units	EQL	3 5 6 3 100 - 1	_	
Nitr				ND	ng/L	0,250	Analyzed 01/20/20		
Nitz				ND	mg/L	0,230	01/20/20		
	ride			845	mg/L	15,0	01/20/20		
	zidę			ND	mg/L	0.500			
	ate=Nitroge	n Total		ND	mg/L	0,080	01/20/20		
Sulf				ND	ng/L	1,50	01/20/20		
Silv				ND	ng/L	0,001	01/20/200		
Alum		,		0.0525	mg/L	0,010	01/21/200		
Arsei				ND	mg/L		01/21/200		
Bariı	m			0.136	mg/L	0.002	01/21/200		
	Llíum			ND	mg∕L mg∕L	0,001	01/21/200		
	lved Calci	BIU .		5,64	ng/L	0.001	01/21/200		
Calci	um			3.64	mg/l	0,250	01/21/200		
Çadmi	um			ND		0.250	01/21/200		
Chrow	ulum.			ND .	mg∕L	0.001	01/21/200		
Coppe	ir.			0.00604	mg/L	0,001	01/21/200		
Diaso	lved Iron			NP	mg/L	0.001	01/21/200		
Iron				0.115	mg/L	0.040	01/21/2009		
Mercu	ry			ND	mg/L	0.040	01/21/2009		
Disso,	lved Potass	ium		5.72	mg/L	0.000	01/21/2009		
Potas					mg/L	0,100	01/21/2009	las	
Disso:	lved Magner	ium		6.15	mg/L	0.100	01/21/2009	LAS	
Magnes				1,29	mg/L	0.200	01/21/2009	LAS	
	Lved Nangan	8.8.0		1.35	ng/2	0.100	01/21/2009	LAS	
Mangar				0.0205	mg/L	0.010	01/21/2009	Las	
	lved Sodium			0,0213	mg/L	0,001	01/21/2009	WOB	
Sodium				540	mg/L	12,5	01/21/2009		
Nickel				574	Mg∕£	12,5	01/22/2009		
Lead	-			ND	mg/L	0.001	01/21/2009		
Seleni	UM			ND	mg/L	0.001	01/21/2009	WOB	
	n Recoveral		,	ND	mg/L	0.002	01/21/2009	NOB	
Thalii		,T6		6.04	mg/L	0.020	01/21/2009	RVM	
Zing	~ 63			סא	mg∕L	0,001	01/21/2009	WOB	
Acidit	v			0.0135	mg/L	0.005	01/21/2009	nog Ngb	
	/ nity as QaC	A 7		38,7	UEq/L	50	01/21/2009	ALX	
Cation.	-Anion Bala	03		298	mg∕L	i	01/21/2009	ALX	
Cyanig		nçê		24.0 / 28,9	meq/mag		02/02/2009		
	-			ND	mg/L	0.005	01/21/2009	NGT	
	Dioxide			259	¤g∕L	0.5	01/26/2009	RSV	
	The Diexi			1.44	mg/L	0.5	01/26/2009		
	te (As Cat			10.7	hg/L	0.5		Brj	
Del Spi	c. Conduct	nce at 25 c	:	3120	unhos/cm	*· *	01/26/2009	BRJ	
Color				5	PtCo Units	5,0	01/27/2009	Jak	
	od oxygen,	in Lab		10.8	mg/L	1	01/21/2009	JDD	
Suiride	as Hydrog	in Sulfide		ND	mg/L	0.021	01/26/2009	CBC	
8103700	nace (as Cr	.C011		287	mg/1	U.UA1	01/23/2009	АЛХ	

.

Corporate Shipping: 2600 Dudley Rd., Nilgore, TX 75662 - http://www.sna-lab.com

NELAP-accredited #02008

FEB. 2. 2009 11:25AM ANA-

ANA-LAB

Corporate

CMID

NO. 798 P. 3

<u> </u>	 2600 Dudley Road -	- Kligore,	TX 75662
	903/984-0551	FAX 903	/984-5914

02/02/2009

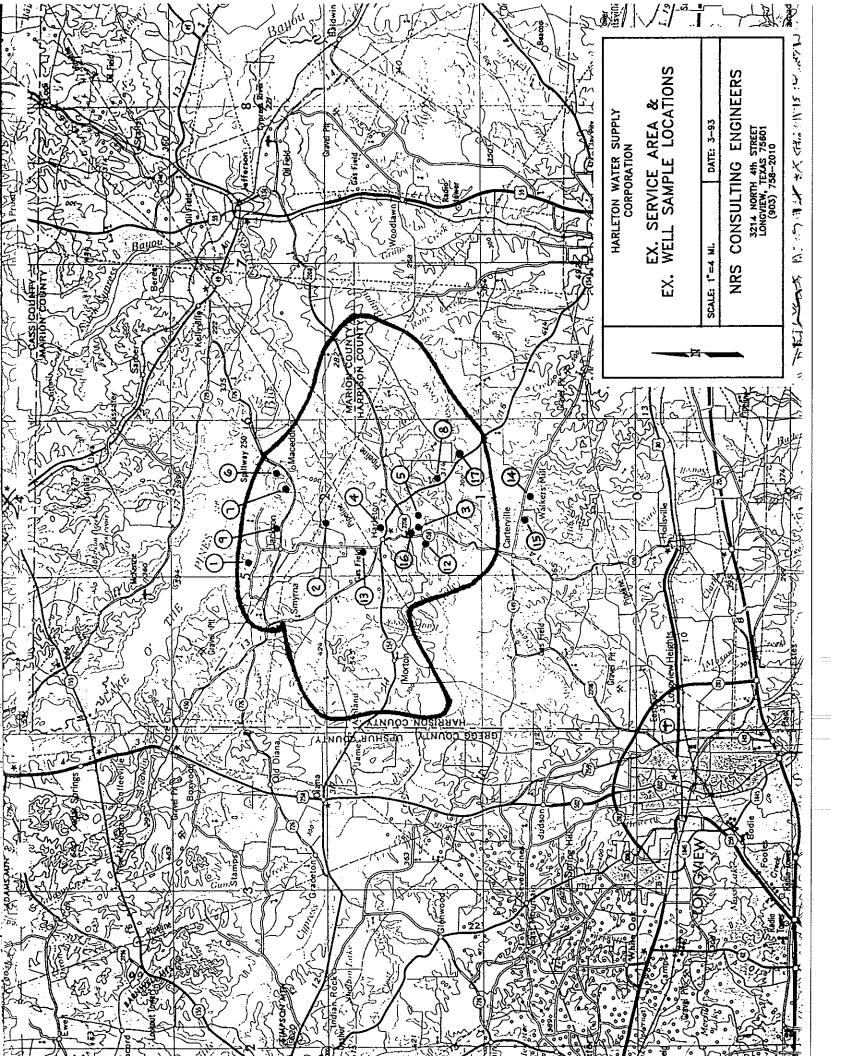
ple Description		Taken		Project	Received	Mail
Silicon Dioxide (\$102)	12.9	mg/L	0,042	01/21/200		
Hydroxide	ND	mg/L	0.8	01/26/200		
Bulfide	ND	mg/L	0.02	Q1/23/200		
Total Dissol ved Solid s	1280	mg/L	50	01/19/200		
Total Hardness Ca/Mg Eq. CaCO3	19.6	mg/L	0.250	01/21/200		
Turbidity	2.52 .	NTU	1	01/20/200		
Laboratory pH	8,6 6 60	\$ U		01/26/200	•	

Corporate Shipping: 2600 Dudley Rd., Kilgore, TX 76662 - http://www.ana-lab.com

NELAP-accredited #02008

#3679 P.003 /003

		Molt d					Well 1	Well 2	Well 3	Well 1 2 3	Well 1 2 3 Well 1 2 3 4
11	Constitute t	VVCII 4			TV SCI	Deference	7/12/1004	8/31/1004	11/11/1007	11/11/1004 Weinhted Weinhted	Weichted
- Z	Color	Cincol 1	PtCo Units		1500	SCI (30 TAC 290.105(b))				2	221181211
~	ha	8.6			> 7.0	SCL (30 TAC 290.105(b))	8.3	8.7	8.6		8.6
n	Alkalinity CaCO3	298	ppm				150	180	216	203.3	225.7
4	Total Hardness	19.6	ppm				4.5	11.6	4.3		8.3
5	Iron	0.115	ppm		0.3	SCL (30 TAC 290.105(b))	0.06	0.08	0.11	0.1	0.1
G	Manganese	0.0213	mdd		0.05	SCL (30 TAC 290.105(b))					
~	Turbidity SiO2	2.52	NTU							:	
8	Acidity CaCO3	38.7	uEq/L								
ი	Chlorides	845	ppm		300	SCL (30 TAC 290.105(b))	14	12.5	18.2		213.3
10	Sodium	574	mdd			Not regulated by State	105.6	98.6	118.7	115.3	224.0
11	Potassium	6.15	ppm								5.04
12	Fluoride	a	bpm	4		MCL, for inorganic (30 TAC 290.104(b))	0.1	0.2	0.5	0.4	
					2	SCL (30 TAC 290.105(b))					
13	Arsenic	DN	ppm	0.05		MCL for inorganic (30 TAC 290.104(b))					
14	Cadmium	an	ppm	0.005		MCL for inorganic (30 TAC 290.104(b))					
15	Chromium	QN	ppm	0.1		MCL for inorganic (30 TAC 290.104(b))					
16	Copper	0.00604	ppm		۳	SCL (30 TAC 290.105(b))					
17	Aluminum	0.0626	ppm		0.05 to 0.2	SCL (30 TAC 290.105(b))					
18	Beryllium	DN	ppm	0.004		MCL for inorganic (30 TAC 290.104(b))					
19	Lead	Q	ppm								
20	Zinc	0.0135	bpm		ß	SCL (30 TAC 290.105(b))					
2	Dissolved Oxygen	10.8	ppm								
ន	C02	259	bpm								
33	H2S	QN	ppm		0.05	SCL (30 TAC 290.105(b))					
24	Barium	0.136	ppm	2		MCL for inorganic (30 TAC 290.104(b))					
25	Mercury	QN	ppm	0.002		MCL for inorganic (30 TAC 290.104(b))					
26	Nitrate	QN	ppm	10		MCL for inorganic (30 TAC 290.104(b))					
27	Selenium	QN	ppm	0.05		MCL for inorganic (30 TAC 290.104(b))					
28	Silver	ND	ppm		0.1	SCL (30 TAC 290.105(b))					
29	Calcium	5.64	ррт				1.6	4	1.6		2.7
8	Magnesium	1.35	ррт				0.1	0.4	0.07	0.1	0.4
સં	Temperature		deg C		,						
32	Conductivity		ohms								-
ŝ	Nitrite	Q	ppm	~		MCL for inorganic (30 TAC 290.104(b))					
34	Sulfate	32.7	ppm	-	300	SCL (30 TAC 290.105(b))	62	27.2	19.4		28.0
35	Total Dissolved Solids	1280	ppm		1000	SCL (30 TAC 290.105(b))	361.5	330.4	407.2	394.9	604.6
36	Nickel	Q	ppm								
	*										
	ND=Not Detected										
	Well #1 capacity	<u>ନ</u>	50 gpm								
	Well #2 capacity	22	22 gpm				_				
	Well #3 capacity	250	250 gpm								
	Well #4 proposed	100	100 apm				-	-		-	


.

Nest	Harrison Well ## - Summar	y of Test We	II Analyses		<u> </u>	
		Well				
No.	Constituent	results	unit	TX MCL	TX SCL	Reference
1	Color	5	PtCo Units		15	SCL (30 TAC 290.105(b))
2	pH	8,6			> 7.0	SCL (30 TAC 290.105(b))
3	Alkalinity CaCO3	298	ppm			
4	Total Hardness	19.6	ppm			
5	Iron	0.115	ppm		0.3	SCL (30 TAC 290.105(b))
6	Manganese	0.0213	ppm		0.05	SCL (30 TAC 290.105(b))
7	Turbidity SiO2	2.52	NTU			
8	Acidity CaCO3	38.7	uEq/L			
9	Chlorides	845	ppm		300	SCL (30 TAC 290.105(b))
10	Sodium	574	ppm			Not regulated by State
11	Potassium	6.15	ppm	<u> </u>		
12	Fluoride	ND	ppm	4		MCL for inorganic (30 TAC 290.104(b))
					2	SCL (30 TAC 290.105(b))
13	Arsenic	ND	ppm	0.05		MCL for inorganic (30 TAC 290.104(b))
14	Cadmium	ND	ppm	0.005		MCL for inorganic (30 TAC 290.104(b))
15	Chromium	ND	ppm	0.1		MCL for inorganic (30 TAC 290.104(b))
16	Copper	0.00604	ppm		1	SCL (30 TAC 290.105(b))
17	Aluminum	0.0626	ppm			SCL (30 TAC 290.105(b))
18	Beryllium	ND	ppm	0.004		MCL for inorganic (30 TAC 290,104(b))
19	Lead	ND	ppm			(100 TAC 290, 104(D))
20	Zinc	0.0135	ppm		5	SCL (30 TAC 290.105(b))
21	Dissolved Oxygen	10.8	ppm			002 (00 TAO 230: 100(D))
22	CO2	259	ppm	·		
23	H2S	ND	ppm		0.05	SCL (30 TAC 290.105(b))
24	Barium		ppm	2		MCL for inorganic (30 TAC 290.104(b))
25	Mercury	ND	ppm	0.002		MCL for inorganic (30 TAC 290, 104(b))
26	Nitrate	ND	ppm	10		MCL for inorganic (30 TAC 290,104(b))
27	Selenium	ND	ppm	0.05		MCL for inorganic (30 TAC 290, 104(b)) MCL for inorganic (30 TAC 290, 104(b))
28	Silver		ppm		0.1	SCL (30 TAC 290.105(b))
29	Calcium		ppm			(30 // (0 200.100(0))
30	Magnesium		ppm		······	
31	Temperature		deg C			
32	Conductivity		ohms		· · · · · · · · · · · · · · · · · · ·	
33	Nitrite		ppm	1		MCL for inorganic (30 TAC 290.104(b))
34	Sulfate	32.7	ppm		300	SCL (30 TAC 290.105(b))
35	Total Dissolved Solids		ppm		1000	SCL (30 TAC 290.105(b))
36	Nickel		ppm			
	*=					
	ND=Not Detected	+				
	IND-NOL Delected					

16 230

		ISULTING ANALYTICAL CHEMISTS AND TESTING ENGINEERS	OFFICIAL CHEMISTS
PEEDS, DAIRY PROD MISCL, ANALYSES SEED PRODUCTS B HOUSE PRODUCTS		P.O.BOX 903 DALLAS, TEXAS 75221 AC 214 742-8491 FAX 214 748-5817	WEIGHERS AND INSPECTORS WEIGHERS AND INSPECTORS NATL, COTTONSEED PRODUCTS ASS REFEREE CHEMISTS AMERICAN OIL CHEMISTS SOCIETY
		March 7, 1995	
:			Rec'd: 3-6-95
itinental Dr Montgomery	illing Company		
eveport, LA			
ort of Test	s on: Water		
entification	Marks: Harleton	W/S Test Well #4	
			ma /1
	Calcium		<u>mg/L</u> 3.2
·			<u>mg/L</u> 3.2 0.9
	Magnesium		0.9
	Magnesium Iron Manganese		0.9 0.10 0.0
- - -	Magnesium Iron Manganese Sodium		0.9 0.10 0.0 329.0
	Magnesium Iron Manganese Sodium Carbonate		0.9 0.10 0.0 329.0 21.6
	Magnesium Iron Manganese Sodium Carbonate Bicarbonate		0.9 0.10 0.0 329.0 21.6 400.2
	Magnesium Iron Manganese Sodium Carbonate Bicarbonate		0.9 0.10 0.0 329.0 21.6 400.2 3.9
	Magnesium Iron Manganese Sodium Carbonate Bicarbonate Sulfate Chloride		0.9 0.10 0.0 329.0 21.6 400.2 3.9 254.4
	Magnesium Iron Manganese Sodium Carbonate Bicarbonate Sulfate Chloride Fluoride		0.9 0.10 0.0 329.0 21.6 400.2 3.9 254.4 0.7
	Magnesium Iron Manganese Sodium Carbonate Bicarbonate Sulfate Chloride Fluoride Nitrate		0.9 0.10 0.0 329.0 21.6 400.2 3.9 254.4 0.7 0.0
	Magnesium Iron Manganese Sodium Carbonate Bicarbonate Sulfate Chloride Fluoride Nitrate Phenolphthalein	Alkalinity as CaCO3	0.9 0.10 0.0 329.0 21.6 400.2 3.9 254.4 0.7 0.0 18.0
	Magnesium Iron Manganese Sodium Carbonate Bicarbonate Sulfate Sulfate Fluoride Nitrate Phenolphthalein Total Alkalinity	Alkalinity as CaCO3 as CaCO3	0.9 0.10 0.0 329.0 21.6 400.2 3.9 254.4 0.7 0.0 18.0 364.0
	Magnesium Iron Manganese Sodium Carbonate Bicarbonate Sulfate Chloride Fluoride Nitrate Phenolphthalein Total Alkalinity Total Hardness a	Alkalinity as CaCO3 as CaCO3 as CaCO3	0.9 0.10 0.0 329.0 21.6 400.2 3.9 254.4 0.7 0.0 18.0 364.0 11.6
	Magnesium Iron Manganese Sodium Carbonate Bicarbonate Sulfate Chloride Fluoride Nitrate Phenolphthalein Total Alkalinity Total Hardness a Dissolved Residu	Alkalinity as CaCO3 as CaCO3 is CaCO3	0.9 0.10 0.0 329.0 21.6 400.2 3.9 254.4 0.7 0.0 18.0 364.0 11.6 1014.0
	Magnesium Iron Manganese Sodium Bicarbonate Bicarbonate Sulfate Chloride Fluoride Nitrate Phenolphthalein Total Alkalinity Total Hardness a Dissolved Residu Specific Conduct	Alkalinity as CaCO3 as CaCO3 is CaCO3	0.9 0.10 0.0 329.0 21.6 400.2 3.9 254.4 0.7 0.0 18.0 1014.0
	Magnesium Iron Manganese Sodium Bicarbonate Sulfate Chloride Fluoride Nitrate Phenolphthalein Total Alkalinity Total Hardness a Dissolved Residu Specific Conduct pH	Alkalinity as CaCO3 as CaCO3 is CaCO3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Magnesium Iron Manganese Sodium Bicarbonate Sulfate Chloride Fluoride Nitrate Phenolphthalein Total Alkalinity Total Hardness a Dissolved Residu Specific Conduct pH	Alkalinity as CaCO3 as CaCO3 is CaCO3 cance Micromhos/cm 140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Magnesium Iron Manganese Sodium Bicarbonate Sulfate Chloride Fluoride Nitrate Phenolphthalein Total Alkalinity Total Hardness a Dissolved Residu Specific Conduct pH	Alkalinity as CaCO3 as CaCO3 is CaCO3 ie (TS) Calculated cance Micromhos/cm 140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Magnesium Iron Manganese Sodium Bicarbonate Sulfate Chloride Fluoride Nitrate Phenolphthalein Total Alkalinity Total Hardness a Dissolved Residu Specific Conduct pH	Alkalinity as CaCO3 as CaCO3 as CaCO3 is CaCO3	0.9 0.10 329.0 21.6 400.2 3.9 254.4 0.7 0.0 18.0 11.6 1014.0 0 8.5 0.25 tted,
	Magnesium Iron Manganese Sodium Bicarbonate Sulfate Chloride Fluoride Nitrate Phenolphthalein Total Alkalinity Total Hardness a Dissolved Residu Specific Conduct pH	Alkalinity as CaCO3 as CaCO3 is CaCO3 ie (TS) Calculated cance Micromhos/cm 140	0.9 0.10 329.0 21.6 400.2 3.9 254.4 0.7 0.0 18.0 18.0 364.0 11.6 1014.0 0 8.5 0.25 tted, ATORIES, INC.

Lab No.____76694

HARLETON WATER SUPPLY CORPORATION

PREVIOUS WELL TEST

DESCRIPTION

.

RESULT

1)	Gene Wrights House - Crystal Cove	See Summary
2)	Lake Deerwood	See Summary
— 3)	Louis Boyd #1	See Summary
<u> </u>	B. C. Newman #1	See Summary
<u> </u>	Louis Boyd #2	See Summary
ે6.)	U.S. Corps - Brushy Creek Park	See Summary
<u>(</u> 2)	U.S. Corps - Shady Grove Park	See Summary
8)	C. C. Williams - 840'	Dry
(9)	M. Watts - 820'	Dry
10)	B. B. Orr	Excess Salt
11)	G. H. Whitehead	Not Available
12)	Pine Ridge Subdivision	Not Available
13)	B. Humphries Survey	Dry
14)	Gum Springs Water Supply	See Summary

PROJEC	ст:	HARLET	ON WSC	- WELL	TEST SU	MMARY			1
DESC.	WET	DEER	BOYD1	WELL3	BOYD2	BCP	SGP	GUM S	
GPM			185	150		2-18	2-18	2-250	
SITE ¥	ŧ 1	2	C	4	5	6	7	14	LIMITS
CALC	2.3	2.4	3.2		2.4	i	2	1	
MAGN	0.3	1.3	1.3	1.9	1	< 1	i	< 1	
IRON	0.04	Ō.16	0. i	0.2	0.4	<.02	0.05	0.03	0.3
MANG	Ō	Õ	0	0.01	Õ	<.02	<.02	0.02	0.05
SODI	260.3	330.5	324.4	449.5	286.8	282	404	237	
CARB	14.4	Ō	12	14.4	28.8	7	O	3	
BICAR	429.7	374.4	444.1	327	511.5	517	399	508	
SULP	16	Ą	8	5	Ó	3	2	29	250
CHLOR	127.7	297	231.5	495	117.9	128	403	41	250
FLOUR	0.5	0.4	0.6	0.6	0.7	0.7	0.4	1	.6-1
NITRA	3	1	0	0	0	0.42	0.65	0.41	45
P-ALK	12	0	10	12	24	6	Ō	3	
T-ALK	376.2	306.9	384	292	467.3	436	327	422	
T-HAR	7	11.5	13.5	18	10	5	8	4	
DR-TS	854.2	1011.	1025.2	1297.6	949.5	680	1013	566	500
SCM	1000	1200	1200	1800	1100	1260	2000	1088	
pН	8.4	7.9	8.5	8.4	8.6	8.5	8	8.4	6.5-8.5

1

• ***

-

1 1

.

•

•

-

Sample Site #1

end original copy by ectified mail to the Texas Water Development Board . 0. Box 12386 mustin, Texas 78711		e of Texas WELL REPO	II.			For TWDB use Well No Located on Fa Received: Form GW 8	19q.
	ropta cacar				1	Form GM 9	
1) OWNER: Person having well drilled	n_ Marcall		Addre	Sizeet or RF	9) 0)	<u>: ایک و ایک (City)</u> (City)	<u>) 217</u> (5
Landowner	SALO Nonel		Addre	ess(Street or RF	<u>SANC</u>	(City)	(5
2) LOCATION OF WELL: CountyL.arlonL	abor	_League			Abstract No.		
NW4 NE4 SW4 SE4 of Section					Survey		
(Circle at many is are known) piles 12.7 0285 (NE, SW.elc.)							NOR
		Over					
	Sketch map of well location w or survey lines, and to				n		
3) TYPE OF WORK (Check): New Well X Deepening D	4) PROPOSED USE (Domestic∑□ I Irrigation □	ndustrial' l			Rotary)F WELL (Chec) / CA Driven (🗅 Dug
Reconditioning D Plugging D		, , , , , , , , , , , , , , , , , , ,		·		🗇 Jetted (
Diameter of hole $3/4^{11} - 3_{11}$	a farmer and a second and a s	t. Depth o	-	eted well75)ate drilled	<u>}{</u>]
	All geasurements made from			ove ground level			
(ft.) (ft.) fon	ption and color of mation material	from (ft.)	10 (ft.)		escription and formation ma	iterial	
0 25 red, yellow	<u>A white easy clay</u>	/ <u>124.</u> 200	200		brown s icky sh.		
25 65 brown liene	tic sh. w/en. st.				e st.w/b	}	
65 100 cryy sh. W/	brown ch. wized w	253	<u>-261</u> -300		ay se. eray sh	<u>.</u>	11 to
	irnite			sa. et	•		
<u>100 110 cróen & brie</u> 110 124 brown & gra	<u>wn sand (sendy s)</u> w' ab	1 <u>•300</u>	315		. W/Band side if neces		
7) COMPLETION (Check):			ER LEVEI	L:			
Straight wall 🗆 Gravel packed 🗔	[Other 🗆 🚶	الشا ا	tic leve		w land surface		
Under reamed Open hole 9) CASING:	<u>``</u>	10) 505	CEN:	ressure ibs.			
Type: old □ New □; Steel ∰ P	lastic 🗆 Other 🖽 🗠	\Typ	e <u>- 191</u> .	re wrappe	d stainl	ess_ster	<u>, I</u>
· · · · · · · · · · · · · · · · · · ·	ft.		foratéd	a :	Slotte	ed []]	
Diameter Setting (inches) From (ft.)	To (ft.) Gage	Diamete (inches		Sei From (ft.)	ting To (ft.)		lot ize
	·	<u> +</u>	2	666 1	746	<u> </u>	00
					801	6	
	<u>.</u>					¢	
1) WELL TESTS: Was a pump test made? 🗆 Yes	🗂 No If yes by whom?		P DATA:	er's Name	airbanks	8 Forse	2
				submersi	 ນໄລ		 1
	6		e			:	
,	ft, drawdown after hrs	Tyr	townd m			- spa Ll	քթե
Bailer test 100 gpm with 6	5 ft. drawdown after <u>1</u> hrs	/ Des		mping rate		÷	
	X .	/ Des	e power	umping rate unit www.s, cylinder,		252	
Bailer test <u>100</u> gra with G Artestan flow <u>gra</u>	5 ft. drawdown after <u>1</u> hrs	/ Des - Tyr Des	e power th to bo	unit		252	
Bailer test <u>100</u> gre with <u>6</u> Artesian flow <u>gen</u> Temperature of vater <u>gen</u> Was a chemical analysis made? Did any strata contain undesirable	5 ft drawdown after 4 hrs Date Yes IN0 water? IYes No	/ Des - Tyr Des	e power th to bo	unit wls, cylinder,		252	
Bailer test <u>100</u> gps with <u>6</u> Artesian flow <u>gps</u> Temperature of water <u>gps</u> Was a chemical analysis made? Did any strata contain undesirable Type of water?	5 ft. drawdown after 9 hrs Date 9 Yes 0 No 1 vater? 0 Yes 1 No depth of strata	Des - Tyr Des bel	e power th to be ow land	unitwis, cylinder, surface.	jet, p ic.,	252	
Bailer test <u>100</u> gpm with <u>6</u> Artesian flow gpm <u>7</u> Temperature of vater Was a chemical analysis made? Did any strata contain undesirable Type of vater? i hereby each and	5 ft drawdown after 4 hrs Date	/ Des Ty; Des bel	e power th to be ow land (or unde the best	unit wis, cylinder, surface, er my supervision t of my knowledg	jet, pic., pn) and that le and belief.	252	
Bailer test <u>100</u> gps with <u>6</u> Artesian flow <u>gps</u> Temperature of vater Was a chemical analysis made? Did any strata contain undesirable Type of water? <u>1 hereby</u> each and NAME GOSTONN U. DeBerry	5 ft. drawdown after 4 hrs Date Yes Do water? DYes No depth of strata r certify that this well was do all of the statements herein a pr refull	/ Des Typ Des bel bel Lied by me ire true to Water We	e power th to be ow land (or unde the best	unit wils, cylinder, surface. er my supervisio	jet, pic., pn) and that le and belief.	: 252	
Bailer test <u>100</u> gpm with <u>6</u> Artesian flow <u>gpm</u> Temperature of vater <u>gpm</u> Was a chemical analysis made? Did any strata contain undesirable Type of water? <u>I hereby</u> each and NAME GOSTONN U. DeSerry	5 ft. drawdown after 4 hrs Date Yes Do water? DYes No depth of strata r certify that this well was do all of the statements herein a pr refull	/ Des Ty; Des bel	e power th to be ow land (or unde the best	unit wis, cylinder, surface, er my supervision t of my knowledg	jet, pic., pn) and that le and belief.	252 	

,

• •

•

· · · · · · · · ·

÷

Sample Site #1

(1948)

HAPE

315 - 324 (ray sa. 324 - 380 (ray sticky sh. w/brown limitic sh.st. w/sendy sh. st. 380 - 420 gray sa. 8 sh. w/thin rk layers 420 - 500 gray sh. w/lignite st. \ge lignitic sh. 500 - 514 gray sandy sh. 514 - 525 fine gray sa. 525 - 553 gray sticky sh. 553 - 561 (ray sa. 561 - 577 gray zahr sh. 577 - 582 gray sandy sh. 582 - 605 gray sa. fine 605 - 641 gray shle \ge sandy sh. w/sa. st. 641 - 755 (gray sa. 5.24 sorrean 1144 Solid Simul 1u Hubs Sachloy 80' Feet Socrean N 7

NEW

à

WEST

é.s 014

ľ,

OPE

t. --- .

a start

Sample Site #1,

POPE Testing LABORATORIES, Inc.

CONSULTING ANALYTICAL CHEMISTS AND TESTING ENGINEERS

FOODS, FEEDS, DAIRY PRODS. WATER, MISCL, ANALYSES COTTON SEED PRODUCTS PACKING HOUSE PRODUCTS

P. O. BOX 903

DALLAS, TEXAS 75221 142 2191

OFFICIAL CHEMISTS WEIGHERS AND INSPECTORS NATL. COTTONSEED PRODUCTS ASS'N. NATE. SOYBEAN PROCESSOR'S ASS'N. REFEREE CHEMISTS AMERICAN OIL CHEMISTS SOCIETY

Date Rec'd 6-4-87

To: Harleton Water Supply Corporation Harleton, Texas

Report of Tests on Water

Received From:

You

Parts Per Million

Identification Marks:

Values reported are for minerals in solution

Gene Wright's House Crystal Cone Sample #3

Calcium	2.3
Magnesium 2	0.3
Iron	0.04
Manganese	0.04
Sodium	260.3
Carbonate	14.4
Bicarbonate	429.7
Sulphate	16.0
Chloride	127.7
Fluoride 5	• •
Nitrate	0.5
Phenolphthalein Alkalinity as CaCO ₂	3.0
Total Alkalinity as CaCO _a	12.0
Total Hardness as CaCO ₃	376.2
Dissolved Residue (TS) Calculated 1625 1/2 816	7.0 95k 0
Specific Conductores Micrombes (m. 11.00)	854.2
pH	

4 . 11

RECOMMENDED LIMITS FOR DRINKING WATER (P. P. M.)

Iron 0.3 Manganese0.05

Fluoride _____ 0.6 - 1.0 Total Solids..... 500

By

POPE TESTING LABORATORIES, Inc.

Lab. No.

42151.

From Aunta

Sample site #2

POPE 7esting LABORATORIES, Inc.

.

CONSULTING ANALYTICAL CHEMISTS AND TESTING ENGINEERS

FOODS, PIEDS, DAIRY PRODS, WATER, A.SCL, ANALYSES COTTON SHED PRODUCTS PACKING FOUSE PRODUCTS FERTILIZIERS

P. O. BOX 903 DALLAS, TEXAS 75221 (214) 742-8491 OFFICIAL CHEMISTS WEIGHERS AND INSPECTORS NATL, COTTONSEED PRODUCTS ASS'N, REFEREE CHEMISTS AMERICAN OIL CHEMISTS SOCIETY

Date Rec'd 1-26-88

To: Harleton Water Supply Corp. Harleton, TX

Report of Tests on Water

Received From: You

Identification Marks: L. Deerwood #1

Values reported are for minerals in solution

Ports Per Million

Calcium	2.4
Magnesium	1.3
Iron	0.16
Manganese	0.0
Sodium	330.5
Carbonate	0.0
Bicarbonate	374.4
Sulphate	4.0
Chloride	297.0
Fluoride	0.4
Nitrate	1.0
Phenolphthalein Alkalinity as CaCO ₂	0.0
Total Alkalinity as CaCO ₃	306.9
Total Hardness as CaCO3	11.5
Dissolved Residue (TS) Calculated	1011.2
Specific Conductance Micromhos/cm1200	
pH	

RECOMMENDED LIMITS FOR DRINKING WATER (P. P. M.)

Iron	0.3	F
Manganese	.0.05	N
Sulphate	250	1
Chloride	250	

Fluoride 0.6 – 1.0 Nitrate...... 45 Total Solids...... 500

POPE TESTING LABORATORIES, Inc.

By Bean Aluta

Lab. No. 52149

Sample SITE #3 #1 Ex, Well No. 1

Sciel original copy by certified mail to the		of Texas ELL REPORT iality Privilege Notice on Rever	Texas Water Wort Collers & Just P. O. Box 13087 Austin, Texas 78711
1) OWNER Horleton Wat	er Supply Address	P.O. Box 372	Harelton Texas 75671
2) LOCATION OF WELL COUNTY Harrison	ntiles in	<u> </u>	(City) (State) (Zip) from Harleton
		(N.E., S.W., olc.)	(Town)
Driller must complete the legal descrip with distance and descrip	Legal dese	ription:	
tion of survey louis, or he must been	Autorisecting rec-	No8lock No	Township no H. Brown
welf on an official Quarter- or Half-Sca General Highway Map and attach the ri	le Texas County	No Survey Nat	me_J. H. Brown
			g section or survey lines
	X Sue attact	et map.	
3) TYPE OF WORK (Check):	4) PROPOSED USE (Chuck);	5) DRILLING MET	HOD (Check):
IXNew Well II Deepening	Domestic Dindustrial Debublic S	PPPIY KI Mud Rotary []	Air Hannier E Driven E Bored
C Reconditioning C Plagging	El trugation Tost Wolf El Other	Air Rotary	Coble Tool [] Jatted [] Other
61 WELLLOG;	DIAMETER OF HOLE	7) BOREHOLE COMPLETION	
8-3-87 Date drilled 8-19-87	Dia. (in.) From (fr.) To (fr.) 12 1/4 Surfage 362 7 7/8 362 485	C Open Hote	Straight Wall [] Underreamed Diher
	+&+578++4+++++562+	If Gravel Packed give inter	valfrom <u>345</u> It. to <u>485</u> It.
<u>(6.)</u> (6.)	Description and color of formation material	8) CASING, BLANK PIPE, ANI	······································
	ellow_sand & white clay	Dia. New Steel, Plastic, etc (m.) or PerL, Stotted, etc Used Screen Mof. if re-	s contragrand trage
_17 80 brown &	gray sh. w/sanddy 8		From To Scree
sh. & sa	a. st.	4 n blank-stee	
80, 141 brown sh	n. w/ sandy st.	4 n S.S.Sandscr	
<u>141 180 gray sh.</u>	•	4 n steel pipe	
180 245 brown & 245 225 mean	gray sh. w/few sa. s	t.4 n s. s. sand	<u>blank 425 420</u> screen 429 4
	a. & sh. w/fossell	4 n steel pip	
sandy sh	gray sh. W/sa. &		
			······································
	ndy sh.& sa. nd (shaley)		MENTING DATA
<u>270 475 gray sa.</u>			<u>362</u> ft.
475 485 brown sh	1. & lignite little	Method used <u>DBBSSU1</u> Cemented by <u>Gib-Sor</u>	'e cement
sandy		Cemental by	Company or Individual?
· · · · · · · · · · · · · · · · · · ·		91 WATER LEVEL.	
ALL MARCH MARCH 144 (S. 19.1	No.	Status invel [1. bel	w lend surface Date
SHIP STATE AND A STATE OF STATE		Artesian flowgo	m. Date 5407 ma
states, see a state			
		10) PACKERS: Typ	e. Depih
·			· · · · · · · · · · · · · · · · · · ·
•		11) TYPE PUMP;	
·		Turbine U Jet	
· · · · · · · · · · · · · · · · · · ·			🗋 Submersible 🔹 🗋 Cylinder
Use reverse sid	e if necessary)	Depth to pump bowls, cylinder	iut pro
13) WATER QUALITY:			, jar, etc., It.
Did you knowingly penetrate any st water? 🗋 Yes 🛛 🖾 No	1	12) WELL TESTS:	
If yes, submit "REPORT OF UNDE		🗇 Type Test: 👘 Pump	🗋 Bailer 🔯 Jetted 🛛 Est mated
Type of water?	_ Depth of strate Lyes No	Yield: 300 gpm with	a contrated
			•
	I hareby certify that this well was drilled b ach and all of the statements herein are tru	y me (or under my supervision) and a to the best of my knowledge and	that belief.
(Type or Pr		l Driller's License No	21
ADDRESS P.O. Box	10 Ore (lity Tex	as 75683
(Signed) Jarlow We (Liconised War	Well Driller) (Signed)	
Please attach electric log, chemical analysi	is, and other nertinent information, if avail	zbia.	Wall No.
DWR-0392 [Rev. 5-27-82]	DEPARTMENT OF WATE		Located on map
		n ricauumtes eapy	

• .

2

•

.

POPE Testing LABORATORIES, Inc.

P. O. BOX 903 DALLAS, TEXAS 75221

ъ – –

OFFICIAL CHEMISTS WEIGHERS AND INSPECTORS NATL. COTTONSEED PRODUCTS ASS'N. NATL. BOYBEAN PROCESSOR'S ASS'N. REFEREL CHEMISTS AMERICAN OIL CHEMISTS SOCIETY

Date Rec'd 8-6-87

To: DeBerry Drilling Company Ore City, Texas

Report of Tests on Water

Received From:

Identification Marks:

POODS, FREDS, DAIRY PRODS. WATER, MISCL. ANALYSES

COTTON SEED PRODUCTS

SACKING HOUSE PRODUCTS

You

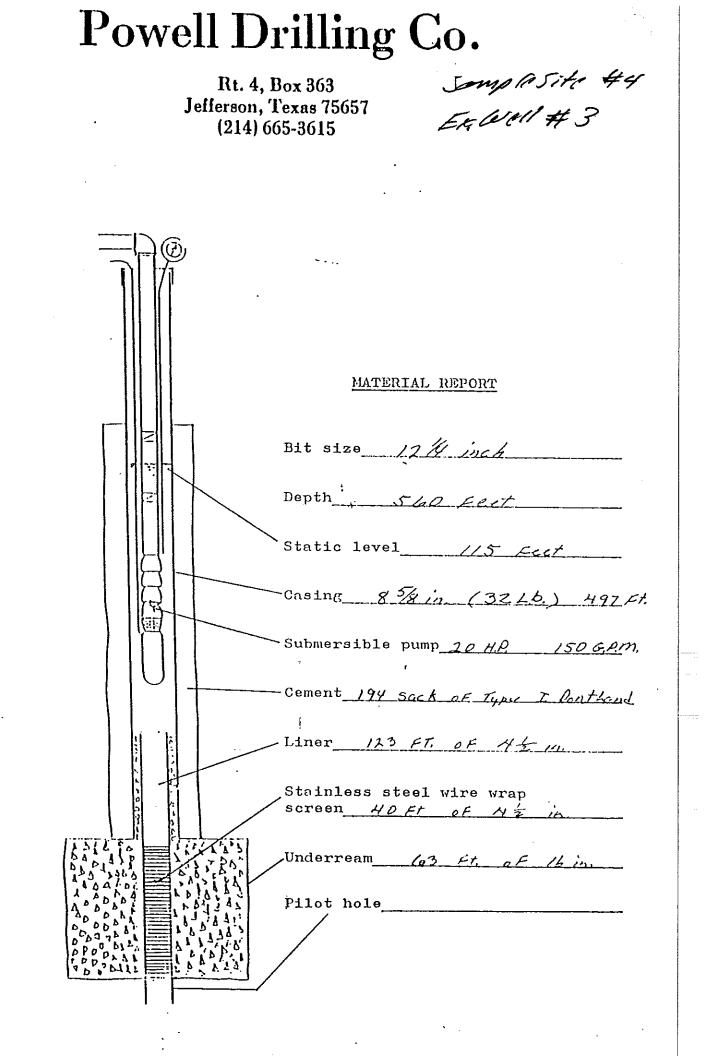
Harleton Water Supply Box 372 Harleton, Texas Test Well #5

Values reported are for minerals in solution	Parts Per Million
Calcium	3.2
Magnesium	1.3
Iron	0.10
Manganese	0.0
Sodium	324.4
Carbonate	12.0
Bicarbonate	<u>), i, i, i</u>
Sulphate	8.0
Chloride	231.5
Fluoride	0.6
Nitrate	0.0
Phenolphthalein Alkalinity as CaCO ₃	10.0
Total Alkalinity as CaCO	384.0
Total Hardness as CaCO,	-
Dissolved Residue (TS) Calculated	13.5
Specific Conductance Micromhos/cm 1200	1025.2
pH	

RECOMMENDED LIMITS FOR DRINKING WATER (P. P. M.)

Irou 0.3	Fluc
Manganese0.05	Nitr
Sulphate	·Tot
Chloride	i

oride 0.6 - 1.0 . .


By

POPE TESTING LABORATORIES, Inc.

con futa

45018 Lab. No,

٠

 $\left(\right)$

Powell Drilling Co. Sample Site #9 Rt. 4, Box 363 Jefferson, Texas 75657 (214) 665-3615		
	WELL	LOG
		ELEARWATER 1-800 492-9101
43 44 70 89 126 158	Soil Ghay Ard Sand yellow Shaly blue Sand Gray Sand Gray Sand gray Shaly Blag Sand gray	
1260 350 498 560	Shake Blue Shake Blue Sond Gray	
, <u>, ,</u>	•	
etting PM. At	sembly: <u>/Z_</u> Stage, Size <u>6</u> 77 <u>257</u> Feet, Discharge Siz <u>400</u> THD	<u>PDATA</u> Type <u>546</u> Discharge Column 2e <u>3"</u> Design <u>150</u> Speed <u>3450</u> Voltage <u>440</u> Type <u>546</u>

-

. .

Powell Drilling Co. Samplesite # ?

Rt. 4, Box 363 Jefferson, Texas 75657 (214) 665-3615

CASING AND CEMENTING DATA

vementing Date 2- 4- 88

ize of Drill Bit 12 14

Size of Casing 8 5/8

acks of Cement Used 194 Sacks of Type I Ponthand

Calculated Annular Height Of Cement Slurry Behind Pipe 497 Ft.

••••

POPE 7esting LABORATORIES, Inc. Ex Well # 3 CONSULTING ANALYTICAL CHEMIETE

CONSULTING ANALYTICAL CHEMISTS AND TESTING ENGINEERS

ER, MISCL. ANALYSES PACKING HOUSE PRODUCTS FERTILIZERS

FOODS, FEEDS, DAIRY PRODS.

P. O. BOX 903 DALLAS, TEXAS 75221

(214) 742-8491 .

OFFICIAL CHEMISTS WEIGHERS AND INSPECTORS NATL. COTTONSEED PRODUCTS ASB'N. REFEREE CHEMISTS AMERICAN OIL CHEMISTS SOCIETY

Date Rec'd 1-20-88

To: Powell Drilling Jefferson, TX

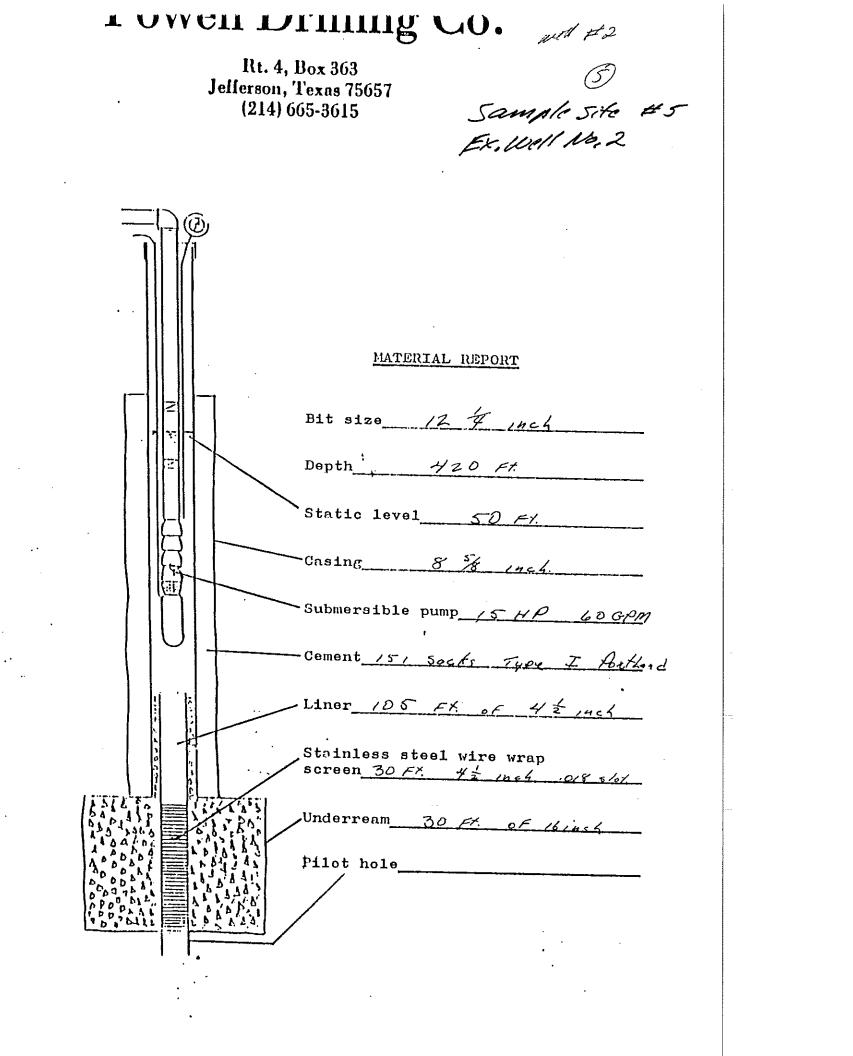
Report of Tests on Water

Received From: You

Identification Marks: Harleton WSC

Values reported are for minerals in solution	
	Parts Per Million
Calcium	4.0
Magnesium	1.9
Iron	0.20
Manganese	0.01
Sodium	449.5
Carbonate	14.4
Bicarbonate	327.0
Sulphate	5.0
Chloride	495.0
Fluoride	0.6
Nitrate	0.0
Phenolphthalein Alkalinity as CaCO ₁	12.0
Total Alkalinity as CaCO ₃	292.0
Total Hardness as CaCO ₃	18.0
Dissolved Residue (TS) Calculated	1297.6
Specific Conductance Micromhos/cm	
pH	

RECOMMENDED LIMITS FOR DRINKING WATER (P. P. M.)

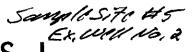

Iron 0.3	Fluoride 0.6 1.0
Manganese0.05	Nitrate
Sulphate 250	Total Solids 500
Chloride	

POPE TESTING LABORATORIES, Inc. By Flow Hunter

Lab. No. 51881

.

.


Jefferson	Son Drilling Co. Ex 4, Box 363 4, Texas 75657 665-3615		
WEL	<u>.L LOG</u>	· · · · · · · · · · · · · · · · · · ·	
0-2 Soit 2-10 Chay yollow 10-48 Sound yellow 18-91 Sound & Soundy Sholo 91-114 Shole Blue 14-164 Sound Gray 164-250 Shole Blue 2 D-307 Silty Sound Orwy 307-390 Shale Blue 357-420 Sand Gray			
Bowl Assembly: <u>16</u> Stage, Size <u>6"</u> Setting <u>273</u> Feet, Discharge Si GPM. At <u>560</u> THD <u>MOTOR DATA:</u> HP: <u>15</u> Make <u>Fronklin</u> Remarks: <u>Set SP 16-16</u> <u>(15 HP</u> <u>Submer sible</u> Fump	Ize <u>3,4</u> Design <u>40</u> Speed <u>3450</u> Voltage <u>460</u> T	ype <u>slik</u>	

	Starte Site to 5
Powell Drilling	g Co. Ex and No. 2
Rt. 4, Box 363 Jefferson, Texas 75657 (214) 665-3615	
CASING AND CEMENTING DA	<u>\TA</u> .
Cementing Date 12-7-87	
ize of Drill Bit 124	
Size of Gasing 8 8	· · · · · · · · · · · · · · · · · · ·
acks of Cement Used 151 Socks of Type Z	Anathond
Calculated Annular Height Of Cement Slurry Behind	Pipe <u>388 Ft</u>
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · ·	
· · · · ·	
· · · · · · · · · · · · · · · · · · ·	
	•

					Samplesite #5 Ex levelt No. 2
	P	owell	Drillin	g Co.	Ex Con Mon
·		Jeffer	lt. 4, Box 363 son, Texas 75657 214) 665-3615	- ,	
			. .	•	
rUMP TE	ST ·				
est Co	nducted By:	Paula	Daillie Co		
				·	
		nleton C			· · · · · · · · · · · · · · · · · · ·
ell No	: <u>#</u> Z_P	ump Setting:_	<u>268</u> _Stat	ic Water Lev	vel: <u>50 /= /-</u>
ate nad Time / -/ 5-87	Pumping Rate GPM	Altitude Gage Reading			
10:30	260 P.M.	50	7:00	60	262
10:35	200	200	8100	60	262
A:40	74	225	9:00	60	262
10145	60	262	10:00	60	262
00	60	262	11:00	60	262
12:00	60	262	12:00	6.0	262
100	60	262	1:00	60	262
2:00	<u> </u>	262	2100	60	262
3:00		262	3/00	<u>leD</u>	262
1:00	60	262	14:00	la 0	762
5100	60	262	5100		262
6100	60	262	6:00	60	262
7:00	60	262	7:00	60	262
3100	60	262	8:00	60	
9100	<u> </u>	262	9:00 570P	60	762
0:00	60	242	10:00	60	762
11:00 Pm		262	10.1.15	anala manya ya kawala masa kamara ya ya sara kawa k	
12:00	60	262	10:30	····	8.7
1:00	60	262	10:45		63
2:00	60	262	11:00		50
100	60	262			
	60	262		مستقد المراجع	
5:00	60	262		······	·
6100	60	262			

•

...

POPE Testing LABORATORIES, Inc.

CONSULTING ANALYTICAL CHEMISTS AND TESTING ENGINEERS

P. O. BOX 903

DALLAS, TEXAS 75221

OFFICIAL CHEMISTS WEIGHERE AND INSPECTORS NATL. COTTONSEED PRODUCTS ASS'N. NATL. SOYBEAN PROCESSOR'S ASS'N. REFEREE CHEMISTS AMERICAN OIL CHEMISTS SOCIETY

Date Rec'd 10-21-87

To: Powell Drilling Jefferson, TX

ODS, FEEDS, DAIRY PRODS.

ATER, HISCL, ANALYSES

COTTON SEED PRODUCTS

PACKING HOUSE PRODUCTS

Report of Tests on Water

Received From: Ýou

Identification Markst None- HARISTON WS.C.

Values reported are for minerals in solution	
	Ports Per Million
Calcium	2.4
Magnesium	1.0
Iron	0.40
Manganese	0.0
Sodium	286.8
Carbonate	28.8
Bicarbonate	511.5
Sulphate	0.0
Chloride	117.9
Fluoride	0.7
IVHTAIC	0.0
Phenolphthalein Alkalinity as CaCO ₂	24.0
Total Alkalinity as CaCO ₈	467.3
Total Hardness as CaCO ₃	10.0
Dissolved Residue (TS) Calculated	949.5
Specific Conductance Micromhos/cm 1100	
pH	

RECOMMENDED LIMITS FOR DRINKING WATER (P. P. M.)

Iron 0.3	Fluoride
Manganese	Nitrate
Sulphate	Total Solids 500
Chioride 250	

POPE TESTING LABORATORIES, Inc.

By For Auto

Lab. No.

Iron

48083

٠

.

Sompla States Ex. Well No. 2

WATER ANALYSIS REPORT TEXAS DEPARTMENT OF HEALTH DIVISION OF WATER HYGIENE 1100 WEST 49 TH STREET AUSTIN, TEXAS 78756

HARLETON WATER SUPPLY CORP. J.F.FONTAINE &ASSOC.,INC. P.O.BOX 98G PALESTINE TX 75801

4

•

1

1

i

.....

.

;

•

WATER SUPPLY #: LABORATORY NO: EP802962 SAMPLE TYPE:

~

.

COLLECTOR REMARKS: SOURCE: WELL 2 DATE COLLECTED 2/16/88 DATE RECEIVED 2/22/88 DATE REPORTED 3/ 1/98

CONSTITUENT NAME	RESULT	UNITS	+/-
Calcium	4	mg/l	
Chloride	101	mg/l	
Fluoride	0.8	mg/l	
Magnesium	< 1	mg/l	
Nitrate (as N)	< 0.01	mg/l	
Sodium	278	mg/l	
Sulfate	4	mg/l	
Total Hardness/CaCO3	11	mg/l	
рН	8.6		
Dil.Conduct(umhos/cm)	1260		
Tot. Alka. as CaCO3	482	mg/l	
Bicarbonate	544	mg/l	
Carbonate	22	mg/l	
Dissolved solids	679	mg/l	
P. Alkalinity /CaCO3	18	mg/l	
Iron	0.07	mg/l	
Manganese	< 0.05	mg/l	

Non-community Water Supply Ch Texas Department of Health - Df 1100 West 49 th Street A	Lvision of Water Hygiene
Gend Report To:	NAME OF WATER SUPPLY:
U.S. Army - Corps of Ensineers	Brushy Cneck Park
U.S. Army - Corps of Engineers P.U. Drawer W	Water Supply I.D. # <u>/58 0034</u> (1-7)
Jefferson, Texas 75657	County Marian (1-7)
JAMPLE TYPE IF FROM WELL IF S	SURFACE SUPPLY
\mathcal{A} Distribution Depth 600 ft. Name	e of Source
Plant Discharge Ageyrs.	-
□ Raw Supply Well No. / 4 2	
Other REMARKS:	
I.W. Starley Date	collected 03/15/85 (31-36)
Laboratory) + D/C Lin 2/1365 Date Reported APR 10 25 (10-13) 2/1365 (17-20)
(10-13) (17-20)	(10-13) 90.150. (17-20)
(10-13) SAMPLE NO.:EP5-5062(17-20) 1016 Calcium mg/l 1	SAMPLE NO. EP5-5062
1031 Magnesium mg/l (1 1052 Sodium mg/l 282	(10-13) (17-20)
L 1929 Carbonate 254 Mg/1 7 A 1928 Bicarbonate Mg/1 517	
1055 Sulfate mg/1 3 1017 Chloride mg/1 128	
1025 Fluoride Mg/l .7 1040 Nitrate (asN) Mg/l .42	· ·
1930 Dissolved solids 680 1931 Phenolphthalein	1028 IPON (0.02 mm/)
Alkalinity as CaCO3 mg/1 6 1927 Total Alkalinity	1032 MANGANERE (0.02 MC/1
as CaCO3 mg/l 436 . 1915 Total Hardness	
as CaCO3 mg/l 5 1925 pH 8.5	
1926 Diluted Conductance Micromhos/cm, 1260	
	•
1927 Total Alkalinity as CaCO mg/l	
1915 Total Hardness as CaCO mg/1	
1925 pH	de la
.926 Diluted Conductance Micromhos/cm	FORM NO. H-71

5 <u>Non-community Water</u> Texas Department of He 1100 West 49 th St	Supply Chemical Analysis Report alth - Division of Water Hygiene reet Austin, Texas 78756
Send Report To:	NAME OF WATER SUPPLY:
U.S. Army-Corps of Engin P.U. Drawer W	
Jefferson, Texas 25657	County Marion (1-1)
SAMPLE TYPE IF FROM WELL	IF SURFACE SUPPLY
Distribution Depth 600 ft	Name of Source
Plant Discharge Age yr	`S•
□ Raw Supply Well No. / 4 2	
O Other REMARKS:	
$\wedge \wedge \wedge$	
(Signature)	Date Collected 03/15/85
	Received MAR 2/1985 Date Reported APR 10 85
(10-13) (17-20)	(10-13) (17-20)
1016 Calcium	mg/1
(10-13) SAMPLE NO.:EP5-5059(17-20)	SAMPLE NO. EPS-5959
$\begin{array}{ccc} 016 \text{ Calcium} & \eta \text{ mg/l} & 2 \end{array}$	(10-13) (12-29)
1031 Magnesium mg/l 1	
	04
1720 Filear bollosca	
1000 00 CIN CO	
017 01301 300	103
	.4 1030 TRON .05 mo/1
931 Phenolohthalein	2
Alkalinity as CaCO3 mg/1 1927 Total Alkalinity	0
as CaCO3 mg/l	327
1915 Total Hardness as CaCO3 mg/l	8
	B.0 l
1926 Diluted Conductance	2000
as CaCO	mg/1
-	
1915 Total Hardness as CaCO	. mg/l
1925 рН	A.
1926 Diluted Conductance	I

ANE 214-968-2222

!

and it.

......

DEBERRY DRILLING COMPANY

WATER WELL CONTRACTORS P. O. Box 1524 ORE CITY, TEXAS 75683

Sample Site #8

Ð

July 23, 1987

2. C. Diviance

11

Harleton Water Supply Corp. P.O. Box 372 Harleton, Texas 75671

Statement on test well #24

:

840 ft.....drill 3 7/8" test hole w/test well logging and hand sampling. Frice per ft. top to bottom....\$3.50 ft..\$ 2,940.00

Note: Hand sampling no good productive water bearing sand. . Test well plugged. Included is a copy of log.

tonthe Del Berry

.

Gaston W. DeBerry Texas Water Well License 321

Test well located on B. Williams place.

HONE 214-968-2222

DEBERRY DRILLING COMPANY

WATER WELL CONTRACTORS P. O. BOX 1524 ORE CITY, TEXAS 75683

Some la Site #9

(9)

71 Hatte

July 20, 1987

Harleton Water Supply Corp. P.O. Box 372 Harleton, Texas 75671

Statment on test well #43

.

820 ft....drill 3 7/8" test hole w/test well logging and hand sampling. Price per ft. top to bottom...\$3.50 ft.....\$ 2,870.00

Note: Hand sampling no good productive water bearing sand. Test well plugged. Included is a copy of log.

Gaston W. DeBerry Texas Water Well License 321

Test well located on Milton Watts land.

Survey: Albright

Letter we do Cooperate in the Mailling of Autom

1E 214-968-2222

DEBERRY DRILLING COMPANY

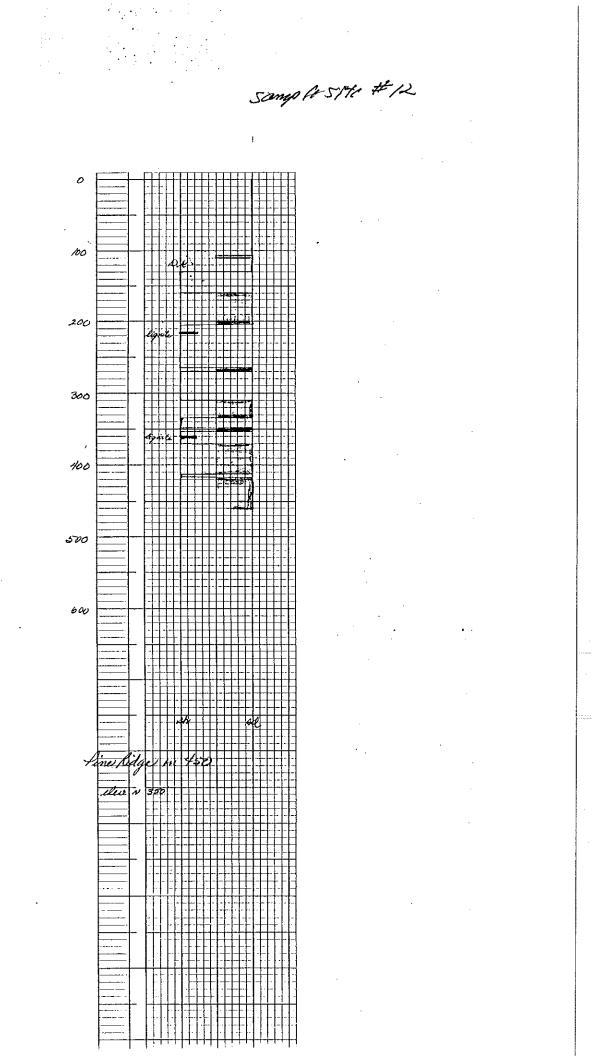
WATER WELL CONTRACTORS P. O. Box 1524 ORE CITY, TEXAS 75683

Sample Site # 10 Dit Massengale

July 22, 1987

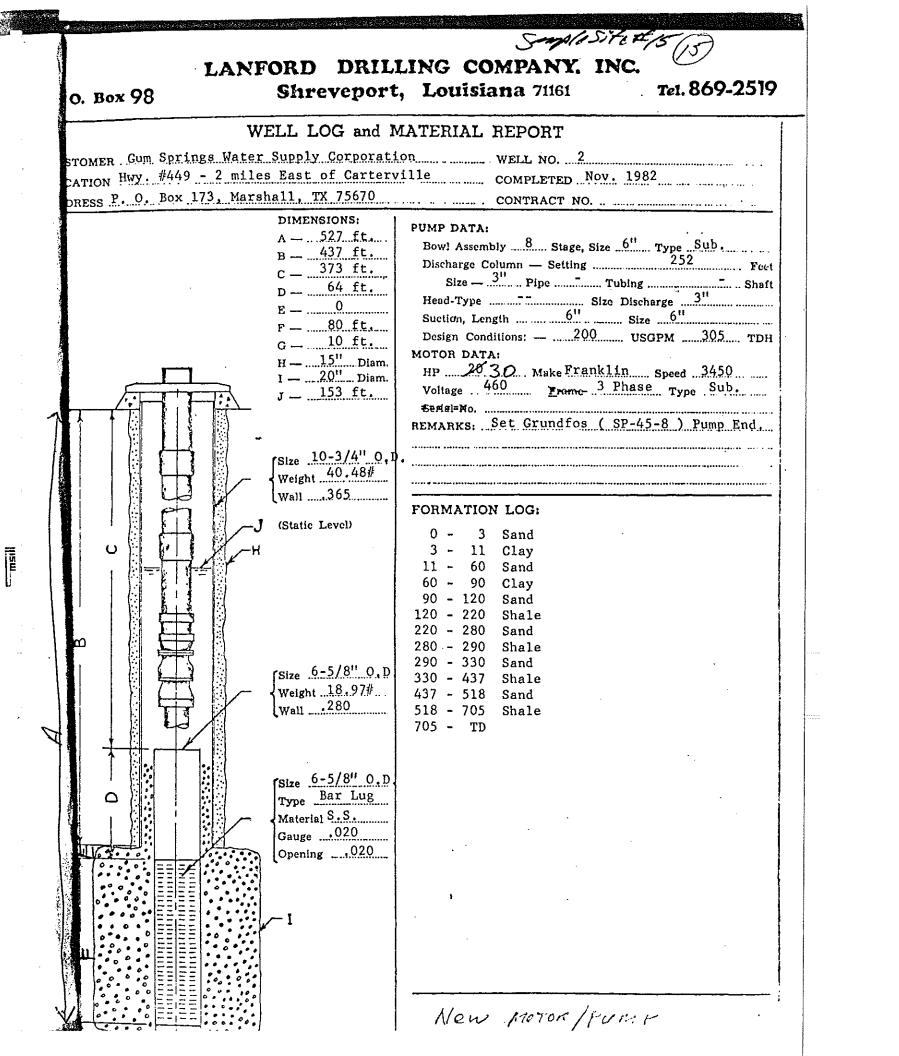
Harleton Water Supply, Inc. P.O. Box 372 Harleton, Dexas 75671

Statment on testing B. J. Orr supply well in Marion county. J.U.Fields - Survey.


Mininum rig charge with two compressor, all equipment, and crew to test water well with compressed air for salt content in water. Test showed excess amount of

Găston U. DeBerry Pexas Water Well License 321

samplesite #11


end original co ertified mail to exas Departme . O. Box 1308 lustin, Texas 7	the Int of Water R 7	esources		· v	State o ATER WE	LL	REPO		•		Well No Located or Received: ,	n map	
	G. H. V	hite	iead		Address		:e 5	, Box 16	4 A	Harite	ton, T	exas	
1) OWNER_	N OF WELL:		me)			(Str	eet or F	RFD)	-	(City)	(State)	(Zip)	
County			··•		miles in	ÍN.E		, etc.)	direction	from	(Town)		
					Legal descrip			,			,		
Filler must con with distance an	direction fr	om two îni	tersecting sec-	:	Section No		•	Block No.	Mama	Townsh	ip		
ell on an offic	I Quarter or	Half-Scale	nd identify the Texas County ap to this form	1	Distance a	nd dir	ection	from two interse	ting sect	ion or survey	y lines		
eneral mignwa	A web suc st	acn ine ma	ap to trus torm	• :	See attached	t map	,	•					
3) TYPE OF	WORK (Chec	k}:		SED USE (C				6) DRILLING					
D New Well		Deepening			trial 🗆 Public			X Mud Rota					
🗆 Reconditi	oning 🗆 P	gniggul	🗆 Irrigati	on □ Test \	Vell D Other			🗆 Air Rotar	Y DC	able Tool	□ Jetted □	Other	
6) WELL LO	G:		DIA Dia{(n.)	METER OF From (ft.)			7) BOI	REHOLE COMPI	ETION				
	18Dec	:79		Syrface	- <u></u>			en Hole		aight Wall		Underreamed	
Date driffe	d		4	350	- 520		□ Gra If C	vel Packed Fravel Packed giv	Oti interval	her	370ft.	520 to	ft.
From	To	·	Description an		mation			ING, BLANK P					
(ft.)	(ft.) 12	Sha		naterial		ļ	New	Steel, Plastic,			ı — —		Gag
-12			v N. sa	nd str	eaks	Dia. (in.)	or Used	Perf., Slotted, Screen Mgf., 1	etc.	rcîal	From	ing (ft.)	_Casi _Casi Scre
20	77	<u>(1)</u>	y (whit			4		Plastic			<u> </u>	390	Sq
-77	164	Sand	d(wh/b	l dark	er on bo	17.		" lap	pipe		370	1410-	20
164	168	Lig	nite			- 11	- u-	•016	slc	tted	410	460	- 59
-168	194	— Sha	le (dar	k)		17		" Bla	ink		460	1465	20
194	223		d (dark			"	- 11	"•01	.6 sl	otted	465	475	- 50
223			le (lig			"	"	" Bla	nk		475	485	20
260	280		le (cho)		10	" .0:	16 CEN	entite da	TA485	517	- <u> </u> 56
280	304		le (119] .	Cemea	ted from	0	ft. t	°390)	
9 04	392		d (3 1a	yer ro	cks)			1 USEO		irton			•••••••
392	395		nite			ŀ	Cemen	ted by	Sel	f Company or 1	Individual)		
395 410	410 		le (roc d (roc k			<u> </u>			••••••				
435	-447		le (sof	J.		<u>ا</u>		TER LEVEQO				18 Dec	
435	460	San	-	- /		-	Art	ic level esian flow	9¥	iow land sur Mi.	Date_ Date_		
460	467		nite					KERS:	Тура		Depth		
-467	475	San			· · · · · · · · · · · · · · · · · · ·	ŀ		+	. 190	•	- cpui		. <u> </u>
475	479	—Lig	nite —			<u> </u>							
479	485	Sha	le			<u> </u>							
485	497	San	d		7.	1	1) TY	PE PUMP:					
497 	500 520	Sha	le d (rock				🗆 Tu	rbin O.	et	X D Submers	ible	C Cylinder	
			side if necessa				Deoth	to pump bowls,	cylinder	, îet. etc.,	250	ft.	
13) WATER						_ '		•					
water?	C Yes	Xi No	strata which c		desirable	1		LL TESTS:					
lf yes, su Type of v	bmit "REPOR vater?	t of une	DESIRABLE V Depth of s	/ATER" trata			⊡ Ту Үі⊧	pe Test: ld: 20	oom wit	192	Jetted it drawdowr	CÎ Estima ↓ strer	ated
2 g ^{Waga} 919	gyical analysis	ff ^{ade?} Op	Depth of s 日前 ^{es} iror	p Nor ខ្មីដំរំ	ទិ៍ជំរំ				abur un				
			I hereby cer	tify that this	well was drilled	by m	e (or u	nder my supervis st of my knowler	ion) and	that			
	elvin W								r	845			
NAME			ype or Print) K Mar	eb - 11	Water Well Texas		rs Regi 756	stration No 70 ·			· · · · · · · · · · · · · · · · · · ·		
ADDRESS		t RUS		SHOTT				•		`	•	-1	•
(Sinned)	(Stree				(Cit	"FU	LLĖ	R WATER	WELL	"BRILL	ING ^{(Z}	ip)	
		{Water	r Welt Dritter)		·	•	•	•	(Con	ipany Name)			
DI	last to last ab	emiest ona	turin and othe	r nartiosot i	nformation, if a	vailahl	e.						

		1131 A.	Some le Site +	For TOWR UN ONLY	
original copy by	Btata of	Техаь	6 0ft 50	Well No.	
L Box 13087	WATER WEL	L' REPOI	BT . etc.	Received:	
Nin, Texas 78711 FANC PARA	work 150 Address F	oute #	5, Hox 33AA, Harle		
H OWNER TOUMY MOSELE	1	(Street or RF		(State) {Zip}	
1) LOCATION OF WELL: County Harrison	1 miles in_	South	stc.) On Hwy. \$450	(Town)	
	Legel descrip		Block NoTownshi	D	
iller must complete the legal description th distance and direction from two inter an or survey lines, or he must locate and	identify the Aptiful I	•	Survey Name form two intersecting section or survey		
all on an official Quarter- or Half-Scale T preset Highway Map and attach the map	Texas County Listance at to this form.				
			6) DRILLING METHOD (Check):		
TYPE OF WORK (Creeck):	4) PROPOSED USS (Check):	supply:	20 Mud Rotery D Air Hammer	D Driven D Bored	
C New Well Despening	D Irrigation C Test Well C Other.		🗆 Air Rotary 🗆 Cable Tool		
e) WELL LOG:	DIAMETER OF HOLE Dia. (in.) From (11.) To (11.)		EHOLE COMPLETION:	[] Underreame	đ
09-15-78	Surface		in Hole D Streight Wall vel Packed D Other	270 - 460 -	
Dete drilled	6 ³ 4 310 460	lf G	iravel Packed give interval from	1. to	ft.
1 Ion	Description and color of formation material	8) CAS	SING, BLANK PIPE, AND WELL SCI	· · · · · · · · · · · · · · · · · · ·	<u> </u>
	nd w. clay streaks	Dia. New	Steel, Plastic, etc. Perf., Slotted, etc.	Setting (ft.) From To	Gag Cati Scre
	rk Sand	lin.) Uxad	Screen Mgf., If commercial		- <u>h</u> 6
	hle (dark)	4 New		0 170	52
160 205 88	DT X THAT XBENNEL	4 New		270 380	20
AND THE	lgnite	15 New			S
	hale (darkw. rock)		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
265 270 Sa	and (USEK)	_ <u>_</u>		<u>i</u>	
270 310 Sr	and (Black)	-	CEMENTING D	Surface	fi.
310 00	and (Black)		odused Haliburton S	eal	
	and (Dark)		inted bySelf(Company of	or Individual)	
340	hale (Dark)		· · · · · · · · · · · · · · · · · · ·		<u>.</u>
360 364 L	ignite shale (light gray)	- s	ATER LEVEL: latic level <u>153</u> ft, below land :	Surface Date	<u>-78</u>
304 010	and (light gray)	_ ^	Artesian flow gom.	Uale	
	Shale (gray)	10) P	ACKERS: Type	Depth	
	Sand (light gray)		· •		<u></u>
		111			
	· · · · · · · · · · · · · · · · · · ·	u	Turbin 🛛 Jet 🗶 Suba	mersible 🛛 Cylin	der
(Use rever	rie sitie il necessary)	u	Otherepith to pump bowls, cylinder, jet, etc	240	_11.
				·····	
Did you knowingly penetrate	iny strate which contained undesirable	5	WELL TESTS: 1 Type Test: D Pump D Bail	er Kalented Kal	Estimat
if yes, submis "REPORT OF U		``'	Yield: 20 gpm with 77	It. drawdown after	۱۲
Was a chemical analysis made?	158 29pg "PH 9.5		for under my supervision) and that	······································	
	I hereby certify that this well was o each and all of the statements herein	are true to th	te best of my knowledge and belief.	345	
NAME Melvin hayne	e FullerWater		Registration No.		
BO2 East	Kusk Marshall Te	7.40	75670 (State)	(Zip)	
		(City)	Internet Lines Lines	1	
ADBRESS (Street or RI	FD)		FULLER WATER WELLS		

.

NO. 1202			•		REPORT NO.	7634		
	•	LAYNE TEXAS C		<u>د</u>		701-66 of 1	-	
,		MATERIAL SE	TTING		DATE 10/L	1/67		
Gum S	CUSTON prings Wa	IER LOCATION ater Supply Corporation	NAME WELL	•	KLL NO.	ite of 1 l	.н.6	
CATION WEL	L Gum S	Springs	ELEVATION TYPE WELL	Gravel-wa	11 11 3851 No. #	ACKE 121+8	#Gel	
Rvey	. . .	FIELD	SIZE, HOLE U	NDERREAMED 20 112,113, N	ОЧ рерти –	465		
UNTY Ha	rrison .	STATE TEXAS	TYPE SCHEN	S.S. W.W Butler RI	₹. G∕	ae .030"		
F.M.	Road No	E. of intersection 450	OTHER J.(• •			
EPTH	LENGTH	BIZE, KIND, WEIGHT MATERI			SKETCH			
+21		10-3/4" O.D. surface ca 2' above ground			·····			
0 30 ' 85 '	3871	Surface Top of 6-5/8" 0.D. line 10-3/4" 0.D. surface ca 6-5/8" 0.D. blank line	asing	111 111 1		111 111		
001 501	701 501	6-5/8" O.D. S.S. W.W. .030" ga.	screen					
631 651	13' 2'	6-5/8" O.D. blank pipe 6-5/8" O.D. set nipple back pressure valve	80	۱.		Cement		
otal d	epth 465	ft.		_103/4",				
							• `	• • •
					•	330'		
Ð						385'		
				400' 65				
•								
						Gravel		
		- -		T.	D-465	*** ···		
		· · · · ·						
					r			
		1		i			1 il	

Sample Site #140#15

.

.

WATER ANALYSIS REPORT TEXAS DEPARTMENT OF HEALTH DIVISION OF WATER HYGIENE 1100 WEST 49 TH STREET AUSTIN, TEXAS 78756

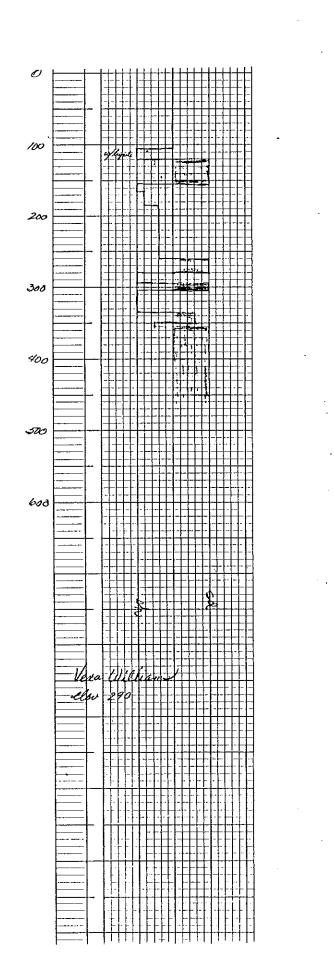
GUM SPRINGS WATER SUPPLY CORP C/O JIMMY STEELE - PRESIDENT P O BOX 750 HALLSVILLE TX 75650 WATER SUPPLY #: 1020026 LABORATORY NO: EP101818 SAMPLE TYPE: DISTRIBUTION

.

COLLECTOR REMARKS: SOURCE:

.

DATE COLLECTED 11/ 1/90 DATE RECEIVED 11/12/90 DATE REPORTED 1/10/91


CONSTITUENT NAME		RESULT	UNITS	+/-
CALCIUM		2 83	MG/L	
CHLORIDE			MG/L	
FLUORIDE	,	0.7	MG/L	
MAGNESIUM	<	1	MG/L	
NITRATE (AS N)		0.40	MG/L	
SODIUM		218	MG/L	
SULFATE		23	MG/L	
TOTAL HARDNESS/CACO3		5	MG/L	
РН		8 • 3		
DIL.CONDUCT(UMHOS/CM)		980		
TOT. ALKA. AS CACO3		335	MG/L	
BICARBONATE		409	MG/L	
CARBONATE		D	MG/L	
DISSOLVED SOLIDS		531	MG/L	
P. ALKALINITY /CACO3		0	MG/L	
ARSENIC	<	0.010	MG/L	
BARIUN		0.020	MG/L	
CADMIUM	<	0.005	MG/L	
CHROMIUM	<	0.02	MG/L	
COPPER	<	0.02	MG/L	
IRON		0.03	MG/L	
LEAD	<	0.0200	MG/L	
MANGANESE	<	0.02	MG/L	
MERCURY	<	0.0002	MG/L	
SELENIUM	<	0.002	MG/L	
SILVER	<	0.010	MG/L	
ZINC	<	0.02	MG/L	
	•			

•

					lions Sa	mø le	Site # ,	6
•				Perselli	litens			
- original copy by		State of	of Texa	s			Vater Well Dritlers	Board
ertified mail to the exas Department of Water Reso	urces	WATER WE	•				ox 13087 Texas 78711	
. O. Box 13087 Justin, Texas 78711	ATTENTION OWN	VER: Confidenti	ality Priv	ilege Notice c	n Reverse Side	•		
Vera Ben Newma	n Form	Address	Rt.	1, Box 5	2 Ha	rletor	1 Texas ((State) (Zi	
LOCATION OF WELL: County Harriso							rleton	
County	······································	<u> </u>	(N.E., S.	W., etc.)	lifection from		(Town)	
		🗌 Legal desc			k No T			
Driller must complete the legal de with distance and direction from ion or survey lines, or he must to	two intersecting sec-				urvey NameT			
ion or survey lines, or ne must to well on an official Quarter- or Ha Seneral Highway Map and attach	If-Scale Texas County			1	ntersecting section of			
		See atlact	ved man.					
TYPE OF WORK (Check):	4) PROPOSED USE			5) DRILL	NG METHOD (Chec	k):		
24 New Welt Deepe		dustrial 🗖 Public S		X Mud R	otary 🛛 Air Hamme	er 🗋 Drive		1
Reconditioning Pluggi				1	tary 🗍 Cable Tool	🗋 Jette	d 🛛 Other	
) WELL LOG:	DIAMETER Dia. (in.) From (1	REHOLE COM	PLETION:	ш	Underreamed	
9-9-85	Suria	ce		Gravel Packed	Other			
Date drilled 9-12-95	_ 7 778 0	450	- "	f Grøvel Packed	give interval from	n <u> </u>	ft. to <u>450</u>	ft.
From To	Description and color	of formation	8) CA	SING, BLANK	PIPE, AND WELL S	CREEN DA	TA:	
(ft.) (ft.)	material		- <u>-</u>		Plastic, etc.		Setting (ft.)	Gage
	d yellow & whi. .ght brown sh.	te sandy		or Perf.,	Slotted, etc. Mgf., if commercial		rom To	Casing Screen
	ay							
	een & brown sh							
	own & gray sh.	w/lignite	st.					_
	rown sa. rown sh.							
165 185 gr	ay sh. & brown	n v / st. o	f				•	
<u> </u>	een sandy sh.							
	own & green sh	I. W/Sandy	L_	I	CEMENTIN	G DATA		-1
	een sa.		Cen	nented from		ft. to		ft.
280 295 br	own sh.							
<u>295 305 fi</u> 3051 335 gr	ne gray sa. ray & brown sh.		Cen	nented by	(Сотр	any or Indi	viduai)	
335 350 fi	ne gray sa.& s	andy sh.		ATER LEVEL				
	ay sh. y/sendy	/ st.	1	tatic level	HOft. below land	surface	Date 9-12-	
355 450 gi	cay sand		- ^	rtesian flow	gpm.		Date	
	· · · · · · · · · · · · · · · · · · ·				Туре	Depth	· · · · · · · · · · · · · · · · · · ·	
			-	•				
				YPE PUMP:				
·				Turbine 🧣 Other		mersible	Cylinder 🗌	_ ,
(Use re	everse side if necessary)		De	pth to pump bo	wls, cylinder, jet, etc	.,	ft	
13) WATER QUALITY:								
water? 🗍 Yes 🗳	ate any strata which containe No			VELL TESTS: Type Test:	🗋 Pump 🔲 Bail	er 031,	etted 🗍 Estim	ated
Type of water?	DF UNDESIRABLE WATER							
Was a chemical analysis ma	ade? 🗌 Yes 🛛 🛣 Ki No				-			
	I hereby certify tha each and all of the si	at this well was drill tatements herein ar	ed by me (e true to ti	or under my su ie best of my k	pervision) and that rowledge and belief.			
DaBatt						21		
COMPANY NAME	y JF1111ng CO. Type or Print)	Water	r Well Drill	er's License No		<u></u>		
ADDRESS P.	O. Box 10		Ore	City,	Tex (State	as	75683 (Zip)	
					lState	,	CZ IDJ	

5000 10 5 He # 16

.

I.

· · ·	•	· .			
			1		
			• •		
·		•	· ·		
			Sample S	1770 #17 ps LIANCYA	
				tes LIATECHAN	പ്
Sund original copy by	State	of Texas		*	
certified mail to the Texas Department of Water Resources	MATED IN	ELL REPORT		Texas Water Well Dritlers P. O. Box 13087	Roard
P. O. Box, 13087 Austin, Taxas 78711	ATTENTION OWNER: Confident		e on Reverse Side	Austin, Texas 78711	
1) OWNER Norman Corpo	(oma)	(Street or RFD)	i Harleton (City)	<u>: 62818 17565</u> (State) (Zi	- T
2) LOCATION DF WELL:	5 Statistical Miles Inst			erleton	· · · ·
		(N.E., S.W., etc.)	direction from	(Town)	•
	Legal des	cription:	· · · · · ·		
Driller must complete the legal descrip with distance and direction from two tion or survey lines, or he must locate well on an official Querter or Half-Sc General Highway Map and attach the i	tion to the right Section			ship	
tion or survey lines, or he must locate well on an official Quarter- or Half-Sci	and identify the Same Same Abstrac			ing covo	
General Highway Map and attach the i	nep to this form. Distance	e and direction from tw	o intersecting section or sur	vey lines	
	Ses attaci	hed map.			
3) TYPE OF WORK (Check);	4) PROPOSED USE (Check);		LING METHOD (Check):		
X New Well	🗆 Domestic 💭 Industrial 🖵 Public S	upply 🛣 Mud	Rotary CAir Hanmer	Driven 🗋 Bored	
🗆 Reconditioning 🛛 Plugging	🞾 Irrigation 🛛 Test Well 🖓 Other	Air I	Rotary 🗋 Cable Tool 🛛	Jetted DOther	
6) WELL LOG:	DIAMETER OF HOLE Dia. (In.) From ((t.) To (ft.)	7) BOREHOLE CO	OMPLETION:		
· 16-10- 83	Dia. (In.) From ((t.) To (ft.)	- D'Opan Hille	X 🗋 Straight Walt	D Underreamed	
Date drilled 10-21-83	7 7/8 0 441	Gravel Packeo	el give interval from	(ft. 10 /14)	
		and the second second			. <u> </u>
From To (ft.) (ft.)	Description and color of formation material	8) CASING, BLAN	K PIPE, AND WELL SCRE	EN DATA:	
6 8 surface	Asod	Dia. New Stee	I, Plastic, etc.	Setting (fl.)	Gage
	d, white shele		., Slotted, etc. en Mgf., if commerciat	From To	Casin Scree
17 . 25. white a	yellow anne was	4 n steel	phpe casing	•6 443	00.00
	gray shale sa	4 n' slot	od pipo	378 400	
	Wh abale due & sandy	un.			
0 110 brown sh					
	· 155	┼──┼──┤─────			
10 265 lignite		<u> </u>	······		
355 300 grey & b	rown she	1 1	·····		+
in 340 fine gra	y na. W/some sh.		CEMENTING DA	ATA	
	Little sendy	Cemented from	ft,	to	ft.
Sol 441 fine gra	y sand				
		Cemented by	(Company o	r (ndividual)	
		9) WATER LEVE			
		Static level	ft, below land surfa	ce Date	
		Artestan flow_	4 gpm.	Date 1()]-	
		<u></u>			
		10) PACKERS:	Түре	Depth	·
		· · · · · · · · · · · · · · · · · · ·			
		<u> </u>			
	······				
		11) TYPE PUMP:			
·····		D Turbine	🗋 Jet 🛛 🗍 Submersit	ole 🛛 Cylinder	
Use reverse s	ide if necessary)	O Other			
13) WATER QUALITY:	ina n. unanan ki	Depth to pump b	owls, cylinder, jet, etc.,	. <u></u> h.	
	strate which contained undesirable	12) WELL TESTS:	······		
water? ···· ··· ··· ··· ··· ··· ··· ··· ···	بالباب والمسام ومتعه تمساله	🛛 Тура Теза:	🗋 Pump 🔲 Baiter	🔊 Jetted 🛛 🖓 Estanuti	sci
. Typa of water?	Depth of strata	Yield: 100		drawdown after	·s.
Was a chemiçai analysis made?	🖸 Yes 🔲 No	<u> </u>			
	I hereby certify that this well was drilled				
	each and all of the statements herein are t	inne in rite pert of whi k		1 A.	
COMPANY NAME Deserry Di	villing Company Water	Vell Driller's License No	321		
(Type o	Print)			1	
ADDRESS P. O.BOX		e Gity	<u> 一 一 〇 ズ 红 み (State) </u>	(2)0)	
4 th	12		(318(8)	14/41	
(Signed) (Ltconsed)	Vatur Weil Dellier)	(ban <u>.</u>). (ban <u>.</u>)	ed Driller Trainee) F	or TDWR use only	
illease attach electric log, chemical ena	lysis, and other pertinent information, if a	-	Ŷ	Vall No.	
WR 0392 (Rev. 5-27-82)	<i>F</i>	WNER'S COPY			
	. WLLED		•		

.....

ONE 214-968-2222

DEBERRY DRILLING COMPANY water well contractors P.O. Box 1524 ore city, texas 75683

Ben Newman Gorp. Bear Bottom Ranch

ъ,

Log on test hole 10-10-83 10-21-83

Surface send brown, red & white shale white & yellow sand brown & gray shale (rock 35') dark brown shale % creenish sand & sandy sh brown & brown shale %/lignite st. (rock st. lignite gray & brown shale %/lignite st. (rock st. lignite gray & brown shale (little sandy st.) fine gray sand w/sone shale gray & brown shale (little sandy st.) fine gray sand w/sone shale gray & brown shale (little sandy st.) fine gray sand w/sone shale gray & brown shale (little sandy st.) fine gray sand w/sone shale gray sand % for sandy shale st. (rock 406 gray & brown shale (% % %) gray sand & shale (% % %) gray sand & fine sand & lignite st. gray sand gray sand w/few sandy shale st. (rock 681'.

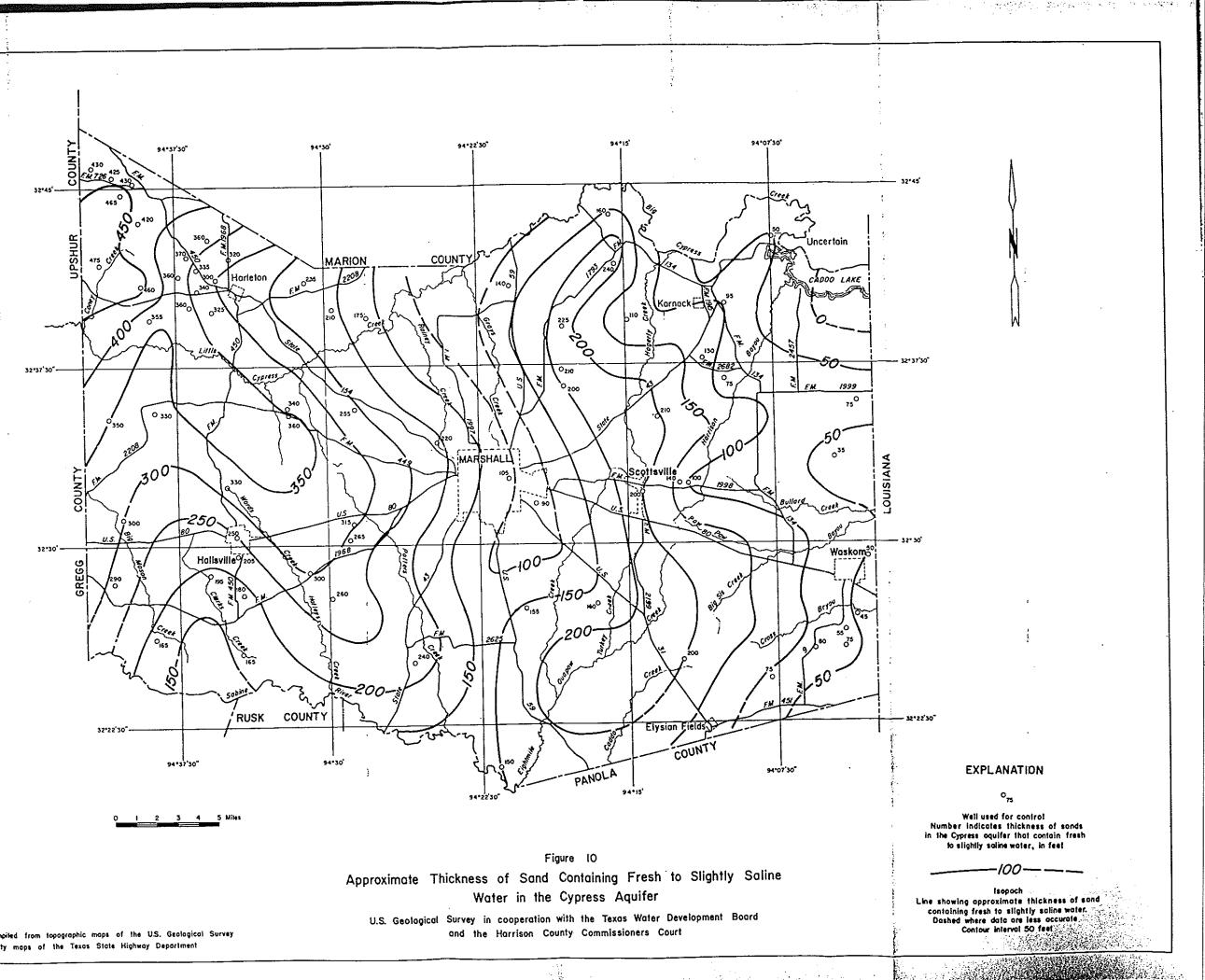
155') shale (rock st.

(rock 681'- 696'-698')

APPENDIX B

in pH to cause

ι ted and developed to et surface casing down B zone to minimize connections from the length of the surface .)H water along the lso to retard corrow_ter; (3) set screens morpumping levels to


rels are allowed to xidation of the re-,7 ec oxidation of the ease of iron to solui d iron will be pren | water conduits of near or drop to the g in dissolved iron water conduits can <u>.</u> sted iron oxide. no levels above the r Joval of the accumueclire further correc-

VELOPMENT

m t from the Cypress logic, chemicalf importance are the h rate of recharge to s'Lire the low pH water water in zone B, and r Jus depths. Chloride the cost of the ties of water.

f. cient of transmisrated sand thickness hat approximately rrison County; howable for development. et of the aquifer can e fic yield of 15 thuld be about

est per mile), the cre-feet, or 13.4 mgd. echarge, which might t : aquifer, and an

Base compiled from topographic maps of the U.S. Geological Survey and county maps of the Texas State Highway Department

u ary to Cypress n Gregg County , and on the basis t e Sabine River), echarge is about (y). This figure s been consumed iccharge can be approximate s, the quantity per mile) is

s jaquifer from areas a few hundred feet t al infiltration and c. After reaching Ly has a large hori-(head). The move-. The flow is greatest sand, and least in c as cemented sand

roulic gradient of the y a contour map riflect the altitude the aquifer, but rather the water level at shown on the map. generally is toward the moves outwardly from me water moves easte; thence the water by he River.

d seeps, evaporation n 3 whose roots reach r jected recharge) was r year, or 35.7 mgd. n, but the quantity nd the great density is from flowing or 1 1964.

ished toward the well.
t : water table or
t : discharging level
ore start of flow) is

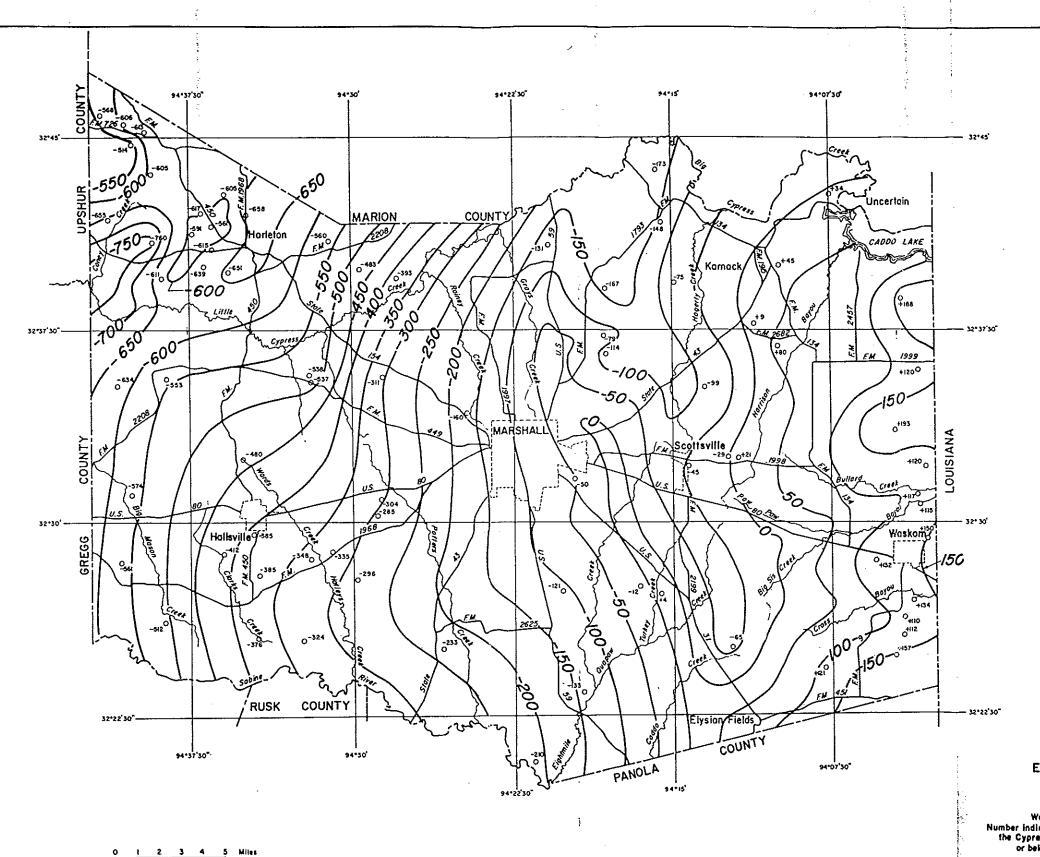


Figure 3 Approximate Altitude of the Base of the Cypress Aquifer US Geological Survey in cooperation with the Texas Water Development Board and the Horrison County Commissioners Court

173

Base compiled from topographic maps of the U.S. Geological Survey and county maps of the Texas State Highway Department

EXPLANATION

0235

3

Well used for control Number indicates attitude of the base of the Cypress aquifer, in feet above(+) or below(-) mean seo level

400-

Structure Contour Drawn at the base of the Cypress aquifer Contour Interval 50 feet Datum is mean sea level

NOTE : The contours also represent the approximate altitude of the base of the Wilcox Group.

12.0 APPENDIX F - SURVEY OF NON-RESIDENTIAL USER INTEREST IN BRACKISH GROUNDWATER

Entity Air Liquide 903-553-1821 water utilities

System City of Longview

County Gregg

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?
- 3. Do you currently use groundwater to satisfy any aspect of your operations?
- 4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.
- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

37.2 Treated water for boiler feed H₂O, 2,000 # boiler, feed water, cooling tower water, solid levels real close. Not interested due to boiler feed quality specs and cooling tower water...."We have to watch our solids closely."

Entity Eastman – Kevin McGuire (903-237-6742) called; left message on 4/8/09

called; left message on 4/9/09

System City of Longview W.U.

County Gregg

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?
- 3. Do you currently use groundwater to satisfy any aspect of your operations?
- 4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.
- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

Entity Eastman – Steve long 903-237-5311

System City of Longview (Lake Cherokee, Sabine River, Lake Fork)

County Harrison

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?

no

3. Do you currently use groundwater to satisfy any aspect of your operations?

yes

4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.

no

5. What factors would effect your decision - cost, location, water quality, other?

all

- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?

Sanitary sewer

8. Other

Generally, not interested in using treated or non-treated brackish groundwater Processes and equipment are too sensitive to TDS. Treated BGW is not as cost Effective.

Entity Keller's Creamery (903-342-3713) Rick Grigsby, Quality Control

System City of Winnsboro

County Wood

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?
- 3. Do you currently use groundwater to satisfy any aspect of your operations?
- 4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.
- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

Called, left message on ~ 4/9/09

Entity L3 Communications (903-455-3450) Left message on Facilities Voice Mail

System City of Greenville

County Hunt

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?
- 3. Do you currently use groundwater to satisfy any aspect of your operations?
- 4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.
- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

Entity MorningStar Specialty Foods (903-885-0881) Randall W left message

System City of Sulphur Springs

County Hopkins

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?
- 3. Do you currently use groundwater to satisfy any aspect of your operations?
- 4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.
- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

Entity Ocean Spray - 903-885-8676 - Craig Miller left message

System City of Sulphur Springs

County Hopkins

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?

No.

3. Do you currently use groundwater to satisfy any aspect of your operations?

No.

- 4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.
- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

96.7 MG/YR Water goes into product. Not a possibility....too picky about their water quality.

Entity **Pilgrim's Pride - Vernon Rowe (903-856-5133 office; 903-767-0945 cell)** Called on 4/30/09 and 5/7/09; left messages System City of Pittsburg; City of Mt. Pleasant; Bi-County Water – chicken farms

County Camp + five

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?

no

3. Do you currently use groundwater to satisfy any aspect of your operations?

yes

4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.

No interest

- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

Entity Rexam (903-297-5400) Philip Burgess, Finance Mgr. called 4/8/09

made contact 4/9/09

System City of Longview Water Utility

County Gregg

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?

No.

3. Do you currently use groundwater to satisfy any aspect of your operations?

No.

4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.

No.

- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

Cooling; washing; R.O.I. too low to bother with it; ww going out. Mr. Burgess, Finance Mgr., state entertaining different water would not make a significant difference in their bottom line; therefore, he did not think Rexam would be interested.

Entity Rubbermaid (903-455-0011) Bill-TRAFFIC; Joe Castillo-overall mgr.

System City of Greenville (dialed 7 then, Facilities Support, left message)

County Hunt

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?

No.

3. Do you currently use groundwater to satisfy any aspect of your operations?

No.

4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.

No.

- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

Patrick McGrath (903-455-0210) – Water quality is significant factor due to our Injection mold process.

Entity Max Shumake (maxshumake@aol.com

System Individual family

County well is in Bowie Co. at county line with Bowie

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?
- 3. Do you currently use groundwater to satisfy any aspect of your operations?
- 4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter hat are dissolved in water.
- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

Family well, 1955, drilling rig seismic 800' cased-up, drink, watered stock, used it for everything. High sodium, collect on side 3 of jars and bucket 73° (hot). Artesian wells most are similar; diary years and years. Test water?

Entity Steam Electric (AEP-SWEPCO)

System N/A

County Harrison

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?

No

3. Do you currently use groundwater to satisfy any aspect of your operations?

No, not really.

4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.

No.

- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

Greg Carter, P.E. (903-746-4585) Corrode and scale...would not go up the towers very well. Not applicable to Steam-Electric.

Entity The Pines (903-845-5834) Message left for Bill Tuttle, Prop. Mgr.

System Pritchett WSC

County Upshur

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?
- 3. Do you currently use groundwater to satisfy any aspect of your operations?
- 4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.
- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

Entity Titus Co. Fresh Water Supply

System N/A

County Titus

- 1. How much water do you use annually in your operation?
- 2. Do you currently use non-treated water to satisfy any aspect operations?

No.

3. Do you currently use groundwater to satisfy any aspect of your operations?

No.

4. Would you be willing to use groundwater that has higher total dissolved solids (TDS)? TDS are comprised of inorganic salts, principally calcium, magnesium, potassium, sodium, bicarbonates, chlorides and sulfates, and some small amounts of organic matter that are dissolved in water.

No.

- 5. What factors would effect your decision cost, location, water quality, other?
- 6. What amount would you likely be able to use?
- 7. What method of disposal do you have access to, or, be interested in using?
- 8. Other

Tommy Spurill (903-572-1844) said there is no need for Titus Co. to look to BGW as it is very hit and miss to find groundwater and they have a very large lake.